Корпоративные финансы
Процесс пересчета будущей стоимости капитала в настоящую носит название ДИСКОНТИРОВАНИЯ, а ставка, по которой производится дисконтирование – ставки дисконта. Процессы дисконтирования и наращения (аккумулирования) являются взаимообратными процессами.
Основные формулы операции дисконтирования получаем из выше рассмотренных формул наращения. Например, формулу определения текущей стоимости в применении к ставке сложного ссудного процента определим из формулы (1.3):
(2.3)
(2.3.1)
где
FM2(r,n) =
- фактор текущей стоимости будущего капитала, коэффициент дисконтирования для сложных ставок ссудного процента, который показывает, во сколько раз текущая (современная) сумма меньше наращенной (будущей) стоимости суммы. Табличные значения приведены в Таблице 2 Приложения.
Пример.
Вам подарили ценную бумагу, в которой написано, что через 10 лет Вы получите 100 000 тенге. Сколько стоит эта бумага сегодня при условии, что справедливая годовая стоимость денег на рынке капитала составляет 10%?
Решение.
Чтобы решить эту задачу необходимо пересчитать будущие 100 000 тенге в сегодняшние деньги по формуле 2.3.1.
1. В Таблице 2 на пересечении строки, соответствующей процентной ставке 10%, и колонки, соответствующей периоду дисконтирования (10 лет), находим фактор текущей стоимости будущего капитала FM2(10%,10) = 0,386
2. Находим текущую стоимость ценной бумаги:
PV = 100 0000,386 = 38 600тг.
Если стоимость денег будет равна 20%, текущая стоимость этой ценной бумаги будет равна 16 200тг.
При учете векселей используется формула (2.2.1), являющаяся обратной по отношению к формуле (1.2.1). В ней t - это число дней, которые остались до конечного срока учета векселя. Определяя продолжительность финансовой операции, принято считать за один день выдачи и день погашения ссуды.
, (2.2.1)
Эффективная годовая процентная ставка. Различные виды финансовых контрактов могут предопределять различные схемы начисления процентов. Как правило, в контрактах у нас и в США оговаривается номинальная процентная ставка обычно годовая, которая не отражает реальной эффективности сделки и не может быть использована для сопоставлений. Эффективная годовая процентная ставка (re) обеспечивает переход от текущей стоимости к будущей при заданных значениях этих показателей и однократном начислении процентов. Эффективная годовая процентная ставка определяется как:
re = (1+)m – 1
где: m – число начислений в год.
Эффективная ставка зависит от номинальных и количественных внутригодовых начислений, причем с ростом m она увеличивается
Пример.
Предприятие может получать ссуду:
а) на условиях ежемесячных начислений процентов из расчета 26% годовых;
б) на условиях полугодового начисления процентов из расчета 27% годовых.
Определим эффективную процентную ставку: а) re = (1+)12 – 1 = 0,2933=29,3%
б) re = (1+)2 – 1 = 0,2882=28,8%
Таким образом, вариант (б) является более предпочтительным для предприятия; причем решение не зависит от величины кредита, поскольку критерием является относительный показатель – эффективная ставка, которая зависит лишь от номинальной ставки процента и количества начислений в год.
Учет инфляционного обесценивания денег в принятии финансовых решений
Учет инфляционного обесценивания денег возможен двумя вариантами:
- когда корректируется сама процентная ставка на темп инфляции (а), она может быть определена по формуле Фишера: ra = r + a + r,
где – r – процентная ставка;
a – темп инфляции.
- когда все вышерассмотренные формулы определения текущей дисконтированной стоимости умножаются на индекс инфляции: Iu = (1+a)
Рекомендуется индекс инфляции за период в n лет определить по формуле сложных процентов:
Iu = (1+a)na * (1+nb*a),
где na – целое число лет;
nb – оставшаяся не целая часть года.
АНАЛИЗ ДЕНЕЖНЫХ ПОТОКОВ. КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ПОСТОЯННЫХ ДИСКРЕТНЫХ ФИНАНСОВЫХ РЕНТ (АННУИТЕТОВ)
Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные, разовые платежи, а множество распределенных во времени выплат и поступлений денежных средств. Последовательный ряд выплат и поступлений называется потоком платежей:
· серия доходов и расходов предприятия по периодам;
· денежный поток, генерируемый в течение ряда периодов в результате реализации какого-либо проекта;
· взносы в погашение различных видов долгосрочных задолженностей;
Поток платежей, все члены которого однонаправленные равные величины, а временные интервалы между двумя последовательными платежами постоянны, называют финансовой рентой или аннуитетом.
Аннуитет может быть исходящим денежным потоком по отношению к инвестору (например, осуществление периодических равных платежей) или входящим денежным потоком (например, поступление арендной платы, которая обычно устанавливается одинаковой фиксированной суммой).
Представление последовательности платежей в виде финансовой ренты существенно упрощает количественный анализ, в частности при оценке недвижимости, и дает возможность использовать набор стандартных формул и табличные значения ряда коэффициентов, содержащихся в них.
В практике применяются разнообразные по условиям формирования ренты:
Таблица 2.1.1 – Признаки классификации и виды ренты
Признак классификации |
Виды ренты | ||||
Продолжительность срока ренты |
Дискретные, срочные |
Непрерывные, бессрочные | |||
Момент выплат членов ренты |
Обычные (постнумерандо) – платежи осуществляются в конце соответствующих периодов |
Авансовые (пренумерандо) - платежи осуществляются в начале соответствующих периодов | |||
Число начислений процентов |
Один раз в год |
m раз в год |
Непрерывно | ||
Соотношение начала срока ренты и фиксированного момента начала действия контракта, оценки ренты и т.д. |
Немедленные, когда указанные моменты совпадают |
Отложенные, когда начало срока ренты запаздывает относительно начала действия контракта | |||