Конструктивная математика
Рефераты >> Математика >> Конструктивная математика

ù ù (ВÚù ù $ u" vC (u, v))« $ u" vù ù (BÚù ù $ u" vC(u, v) Ú C(u, v)),

и сворачивания цепочек кванторов с помощью алгоритма выявления конструктивной задачи. Это даёт доказуемую в арифметике с транксфинитной индукцией до a эквивалентность

А« $ u" vù ù (ù ù $ w С a Ú Da)

с бесквантовой формулой С a, так что

А a = $ u" v $ w С a (u, v, w)

оказывается мажорантой для А. Суждение оказывается с точностью до технических деталей, эквивалентным утверждению о существовании вывода высоты <a исходной формулы с использованием w-правила. В этом смысле мажоритарная семантика эквивалентна ступенчатой семантике А.А. Маркова. После фиксации некоторого класса q общекурсивных функций (например, класса всех функций, определимых пекурсией до a ) определяются мажоранты ещё более простой структуры:

$ u" v С a (u, v, j( v)) для jÎq .

Если К – бесквантовое исчисление для класса q, то К- истинность $ u " v C (u, v) определяется как выводимость формулы С (t, v) c переменной v для некоторого постоянного терма t. Если в качестве К взято стандартное исчисление равенств для функций, определимых рекурсией до ординалов, меньших a, то К- истинными оказываются формулы, выводимые в формальной интуиционной арифметике, пополненной принципом Маркова, соотношениями, определяющими алгоритм выявления конструктивной задачи, и правилом индукции до ординалов b таких, что e (b) – первое e - число, большее b. В частности, a=e0 для b=w, т.е. для обычной индукции.

Доведение обоснования до бескванторного уровня (К- истинность) связано со стремлением остаться по возможности в рамках финитизма, т.е. бескванторного языка и соответствующих логических средств. С этим же связано стремление ограничиться небольшими a Для большей части «работающего» конструктивного анализа (включая теорему о непрерывности эффективных операторов) достаточно конечных a

2. СТРУКТУРА КОНСТРУКТИВНОЙ МАТЕМАТИКИ

1).КОНСТРУКТИВНОЕ ДЕЙСТВИТЕЛЬНОЕ ЧИСЛО.

Конструктивное действительное число – понятие действительного числа, употребляемое в конструктивной математике. В более широком смысле – действительное число, конструируемое в соответствии с тем или иным кругом конструктивных средств. Близкое значение имеет термин «вычислимое действительное число», обычно употребляемый в тех случаях, когда не ставится цель изначального, нетрадиционного, нетрадиционного построения континуума, а речь идёт просто о классических действительных числах, вычислимых в том или ином смысле посредством некоторых алгоритмов.

2) КОНСТРУКТИВНЫЙ ОБЪЕКТ.

КОНСТРУКТИВНЫЙ ОБЪЕКТ — название, установившееся за математич. объектами, возникающими в результате развертывания так называемых конструктивных процессов. При описании того или иного конкретного конструктивного процесса обычно « .предполагается, что отчетливо охарактеризованы объекты, которые в данном рассмотрении фигурируют в качестве нерасчленяемых на части исходных объектов; предполагается, что задан список тех правил образования новых объектов из ранее построенных, которые в данном рассмотрении фигурируют в качестве описаний допустимых шагов конструктивных процессов; предполагается, что процессы построения осуществляются отдельными шагами, причем выбор каждого очередного

шага произволен в тех границах, которые определяются списком ранее построенных объектов и совокупностью тех правил образования, которые фактически можно применить к ранее построенным объектам». Такое описание конструктивного процесса, а тем самым и Конструктивного объекта, разумеется, не может претендовать на то, чтобы быть точным математич. определением. Однако конкретные математич. теории всегда имеют дело лишь с такими конкретными типами Конструктивного объекта, которые допускают точную характеризацию. Приведенное выше описание Конструктивного объекта служит в таких ситуациях ориентиром для выбора соответствующих точных определений.Примером точно определенного типа Конструктивного объекта могут служить слова в каком-либо фиксированном алфавите (буквы этого алфавита играют роль исходных объектов; новые слова получаются из уже имеющихся путем приписывания к последним справа букв рассматриваемого алфавита). Другими примерами типов Конструктивного объекта могут служить конечные графы, конечные абстрактные топологические комплексы, релейно-контактные схемы (выбор соответствующих исходных объектов и правил образования не представляет труда). Как Конструктивный объект могут быть также определены рациональные числа, алгебраические многочлены, алгоритмы и исчисления различных точно определенных типов, автоматы конечные, конечно определенные группы и другие им подобные математич. объекты.

Конструктивные объекты играют важную роль в тех математич. теориях, в к-рых возникает потребность в рассмотрении объектов, допускающих отчетливое индивидуальное задание средствами той или иной математич. символики. В рамках теоретико-множественной математики, неограниченно использующей абстракцию актуальной бесконечности, Конструктивный объект и произвольные множества Конструктивного объекта рассматриваются одновременно и наравне с прочими математич. Объектами, среди которых Конструктивные объекты выделяются лишь своей большей «осязаемостью». В рамках конструктивной математики Конструктивные объекты или объекты, задаваемые ими) представляют собой единственно допускаемый к рассмотрению тип математич. объектов, и рассмотрение их здесь ведется на базе отказа от применения абстракции актуальной бесконечности и на основе специальной конструктивной логики, учитывающей, в частности, специфику определения Конструктивного объекта.

3). КОНСТРУКТИВНОЕ МЕТРИЧЕСКОЕ ПРОСТРАНСТВО.

Концепция метрич. пространства используется в конструктивной математике. Близкий смысл имеет также понятие рекурсивного метрического пространства.

Список { ,р}, где - некоторое множество конструктивных объектов (обычно слов в том или ином алфавите), р - алгоритм, переводящий любую пару элементов в конструктивное действительное число, названный Конструктивным математическим пространством, если при любых X, У, Z Î

выполняется: 1) р(Х, Х)=0, 2) р(Х, У) £ р(Х, Z)+р(У, Z) (здесь и ниже термин "алгоритм" употребляется в смысле одного из точных понятий алгоритма). Множество и алгоритм р называются носителем и метрическим алгоритмом соответствующего Конструктивного метрического пространства, а элементы - точками этого Конструктивного метрического пространства. Из аксиом 1), 2) следует, что всегда р(Х, У)³0 и р(Х, У)= р(У, X). Две точки, X, YÎ называются эквивалентными (различными) в Конструктивном метрическом пространстве { , р}, если р(Х, У)=0 (соответственно р(Х,У)¹0).

III. ЗАКЛЮЧЕНИЕ

Роль «конструирования» в математике.

Математики действуют, применяя процесс «конструирования»; они «конструируют» сочетания все более и более сложные. Возвращаясь затем путем анализа этих сочетаний — этих, так сказать, совокупностей — к их первоначальным элементам, они раскрывают отношения этих элементов и выводят отсюда отношения самих совокупностей.


Страница: