Комплексные числаРефераты >> Математика >> Комплексные числа
Из формулы (1) следует, что для любого комплексного числа Z, причем =0 тогда и только тогда, когда Z=0, т.е. когда A=0 и B=0. Докажем, что для любого комплексного числа Z справедливы формулы:
4.СЛОЖЕНИЕ И УМНОЖЕНИЕ КОМПЛЕКСНЫХ ЧИСЕЛ
Суммойдвух комплексных чисел A+B·i и C+D·iназывается комплексное число (A+C)+(B+D)·i, т.е. (A+B·i)+(C+D·i)=(A+C) + (B+D)·i
Произведением двух комплексных чисел A+B·i и C+D·i называется комплексное число (A·C – B·D)+(A·D+B·C) ·i, т.е.
(A + B·i)·(C + D·i)=(A·C – B·D) + (A·D + B·C)·i
Из формул вытекает, что сложение и умножение можно выполнять по правилам действий с многочленами, считая i2= –1. Операции сложения и умножения комплексных чисел обладают свойствами действительных чисел. Основные свойства:
Переместительное свойство:
Z1 +Z2=Z2+Z1, Z1·Z2=Z2·Z1
Сочетательное свойство:
(Z1+Z2)+Z3=Z1+(Z2+Z3), (Z1·Z2)·Z3=Z1·(Z2·Z3)
Распределительное свойство:
Z1·(Z2+Z3)=Z1·Z2+Z1·Z3
Геометрическое изображение суммы комплексных чисел
Рисунок 3 |
Согласно определению сложения двух комплексных чисел, действительная часть суммы равна сумме действительных частей слагаемых, мнимая часть суммы равна сумме мнимых частей слагаемых. Точно также определяются координаты суммы векторов:
Сумма двух векторов с координатами (A1;B1) и (A2;B2) есть вектор с координатами (A1+A2;B1+B2). Поэтому, чтобы найти вектор, соответствующий сумме комплексных чисел Z1 и Z2 нужно сложить векторы, соответствующие комплексным числам Z1 и Z2.
Пример 1: Найти сумму и произведение комплексных чисел Z1=2 – 3×i и
1 Способ:
Z2= –7 + 8×i.
Z1 + Z2 = 2 – 7 + (–3 + 8)×i = –5 + 5×i
|
Z1×Z2 = (2 – 3×i)×(–7 + 8×i) = –14 + 16×i + 21×i + 24 = 10 + 37×i
2 Способ:
5.ВЫЧИТАНИЕ И ДЕЛЕНИЕ КОМПЛЕКСНЫХ ЧИСЕЛ
Вычитание комплексных чисел – это операция, обратная сложению: для любых комплексных чиселZ1 и Z2 существует, и притом только одно, число Z, такое, что:
Z + Z2=Z1
Если к обеим частям равенства прибавить (–Z2) противоположное числу Z2:
Z+Z2+(–Z2)=Z1+(–Z2), откуда
Z = Z1 – Z2
Число Z=Z1+Z2 называют разностью чисел Z1 и Z2.
Деление вводится как операция, обратная умножению:
Z×Z2=Z1
Разделив обе части на Z2 получим:
Z=
Из этого уравнения видно, что Z20
|
Геометрическое изображение разности комплексных чисел
Рисунок 4 |
Разности Z2 – Z1 комплексных чисел Z1 и Z2, соответствует разность векторов, соответствующих числам Z1 и Z2. Модуль разности двух комплексных чиселZ2 и Z1 по определению модуля есть длина вектора Z2 – Z1. Построим этот вектор, как сумму векторов Z2 и (–Z1) (рисунок 4). Таким образом, модуль разности двух комплексных чисел есть расстояние между точками комплексной плоскости, которые соответствуют этим числам.
Это важное геометрическое истолкование модуля разности двух комплексных чисел позволяет с успехом использовать простые геометрические факты.
Пример 2: Даны комплексные числа Z1= 4 + 5·i и Z2= 3 + 4·i. Найти разность Z2 – Z1 и частное
Z2 – Z1 = (3 + 4·i) – (4 + 5·i) = –1 – i
==
6.ТРИГОНОМЕТРИЧЕСКАЯ ФОРМА
КОМПЛЕКСНОГО ЧИСЛА
Рисунок 5 |
Запись комплексного числа Z в виде A+B·i называется алгебраической формой комплексного числа. Помимо алгебраической формы используются и другие формы записи комплексных чисел.
Рассмотрим тригонометрическую форму записи комплексного числа. Действительная и мнимая части комплексного числа Z=A+B·i выражаются через его модуль = rи аргумент j следующим образом:
A= r·cosj ; B= r·sinj.
Число Z можно записать так:
Z= r·cosj+ i··sinj = r·(cosj + i·sinj)
Z = r·(cosj + i·sinj) (2)
Эта запись называется тригонометрической формой комплексного числа.
r =– модуль комплексного числа.
Число j называют аргументом комплексного числа.
Аргументом комплексного числа Z0 называется величина угла между положительным направлением действительной оси и вектором Z, причем величина угла считается положительной, если отсчет ведется против часовой стрелки, и отрицательной, если производится по часовой стрелке.
Для числа Z=0 аргумент не определяется, и только в этом случае число задается только своим модулем.
Как уже говорилось выше = r =, равенство (2) можно записать в виде