Динамическое программирование (задача о загрузке)
Рефераты >> Математика >> Динамическое программирование (задача о загрузке)

Соответственно оптимальным решением задачи является (0,0,4,1,0,0,5,7), соответственно максимально количество баллов, которое студент может набрать за отведенное время равно 46.

2.4 Анализ чувствительности решения

В таблице для первого этапа нам, по существу, необходимо получить оптимальное решение лишь для y1=30, так как это последний этап, подлежащий рассмотрению (см. Приложение А). Однако в таблицу включены вычисления для y1=0,1,…,30, которые позволяют провести анализ чувствительности решения.

Например, что произойдет, если время отводимое на контрольную работу будет 20, вместо 30 (см. Приложение А)?

Y1=20

k1=0

Y2=y1-2*k1=20

k2=0

Y3=y2-4*k2=20

k3=4

Y4=y3-k3=16

k4=0

Y5=y4-4*k4=16

k5=0

Y6=y5-7*k5=16

k6=0

Y7=y6-5*k6=16

k7=3

Y8=y7-3*k7=7

k8=7

соответственно максимально количество баллов, которое студент может набрать за отведенное время равно 34.

Что произойдет, если время отводимое на контрольную работу будет 5, вместо 30 (см. Приложение А)?

y1=5

k1=0

y2=y1-2*k1=5

k2=0

y3=y2-4*k2=5

k3=0

y4=y3-k3=5

k4=0

y5=y4-4*k4=5

k5=0

y6=y5-7*k5=5

k6=0

y7=y6-5*k6=5

k7=0

Y8=y7-3*k7=5

k8=5

соответственно максимально количество баллов, которое студент может набрать за отведенное время равно 10.

Что произойдет, если типов вопросов будет 4, вместо 8 (см. Приложение Б)?

Этап 4.

Этап 3.

Этап 2.

Этап 1.

y1=30

k1=5

y2=y1-2*k1=20

k2=3

y3=y2-4*k2=8

k3=4

y4=y3-k3=4

k4=3

соответственно максимально количество баллов, которое студент может набрать за отведенное время равно 39.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Таха Х. Введение в исследование операций.–М.: Мир,1985.

2. Кузнецов Ю. Н. Математическое программирование. –М.: Наука,1976.

3. Вентцель Е. С. Исследование операций. –М.: Наука,1976.

4. Вентцель Е. С. Элементы динамического программирования. –М.: Наука,1987.

5. Акоф Р., Сасиени М. Основы исследования операций. –М.: Мир,1971.

6. Вентцель Е. С. Исследование операций: задачи, принципы, методология. –М.: Наука,1988.

7. Карманов В. Т. Математическое программирование. –М.:Наука,1986.

8. Зайченко Ю. П. Исследование операций. –К.: Высшая школа,1985.

9. Аоки М. Введение в методы оптимизации. –М.: Наука,1977.

10. Беллман Р., Дрейфус С. Прикладные задачи динамического программирования. –М.: Наука,1965.

11. Муну М. Математическое программирование. Теория алгоритмов. –М.: Наука,1990.

ПРИЛОЖЕНИЕ А

Решение задачи методом динамического программирования

ПРИЛОЖЕНИЕ Б

Анализ чувствительности решения

ПРИЛОЖЕНИЕ В

Решение задачи симплекс-методом


Страница: