Динамическое программирование (задача о загрузке)Рефераты >> Математика >> Динамическое программирование (задача о загрузке)
Сначала построим рекуррентные соотношения для процедур прямой и обратной прогонки, а затем проведем сравнение двух вычислительных схем. Важное различие между двумя формулировками непосредственно следует из определения состояния.
Обозначим количества оставленных и проданных в j-м году овец через xj и yj, соответственно. Положим Zj,=xj+yj. Из условий задачи следует, что
z1=2x0=2k, zj=2xj-1,j=l,2, .,n.
Состояние на этапе j можно описать с помощью переменной zj, которая выражает количество имеющихся к концу этапа j овец для распределения на этапах j+1, j+2, ., n, или с помощью переменной xj, которая выражает количество имеющихся к началу этапа j+1 овец, обусловленное принятыми на этапах 1,2, .,j решениями. Первое определение ориентировано на построение рекуррентного соотношения для процедуры обратной прогонки, тогда как второе определение приводит к использованию алгоритма прямой прогонки.
Алгоритм обратной прогонки
Обозначим через fi(zi) максимальную прибыль, получаемую на этапах j,j+1,…,n, при заданном zj. Рекуррентное соотношение имеет следующий вид:
Заметим, что yj и zj - неотрицательные целые числа. Кроме того, уj (количество овец, проданных в конце периода j) должно быть меньше или равно zj. Верхней границей для значений zj, является величина 2jk (где k- исходный размер стада), которая соответствует отсутствию продажи.
Алгоритм прямой прогонки
Обозначим через gj(xj) максимальную прибыль, получаемую на этапах 1,2, .,j при заданном xj, (где xj— размер стада к началу этапа J+1). Рекуррентное соотношение записывается в следующем виде:
- целое.
Сравнение двух формулировок показывает, что представление xj-1 через xj создает более существенные препятствия для вычислений, чем представление zj+1 через zj.
В замене xj-1=(xj+yj)/2 подразумевается целочисленность правой части, тогда как на равенство zj+1=2(zj-yj) такое требование не накладывается. Таким образом в случае процедуры прямой прогонки значения yj и xj, связанные неравенством
Yj <=2jk -Xj,
должны дополнительно удовлетворять условию целочисленности их полусуммы, связанному с видом зависимости хj-1 от xj,. Рассмотренный пример иллюстрирует трудности вычислительного характера, которые обычно возникают при использовании алгоритма прямой прогонки.
2.3 Решение задачи о загрузке
Контрольная работа содержит вопросы по N различным темам. Каждый вопрос типа i имеет вес Vi(i=1,2,…N), а также время, отводимое на ответ Wi. Максимально время, которое может затратить студент на контрольную работу W. Требуется определить максимальное количество баллов (вес), которое может набрать студент за отведенное время W=30. Данные приведены в таблице:
I |
Wi |
Vi |
1 5 2 6 3 4 4 3 5 6 6 7 5 8 7 |
2 3 1 4 7 5 3 2 |
2 3 2 4 6 5 4 2 |
Решить задачу, приведя ее к рекуррентным соотношениям.
Сначала рассмотрим задачу в общей постановке. Если обозначить количество вопросов типа і через ki, то задача принимает следующий вид:
при ограничениях
ki-неотрицательные числа.
Если отбросить требования целочисленности ki, то решение задачи нетрудно найти с помощью симплекс-метода (см. Приложение В). В самом деле, так как остается лишь одно ограничение, базисной будет только одна переменная, и задача сводится к выбору типа і, для которого величина viW/wi принимает максимальное значение. Исходная задача не является задачей линейного программирования, и для ее решения необходимо использовать метод динамического программирования. Следует отметить, что рассматриваемая задача может быть также решена с помощью методов целочисленного программирования.
Каждый из трех основных элементов модели ДП определяется следующим образом.
1. Этап j ставится в соответствии типу j, j=1,2,…,N.
2. Состояние yj на этапе j выражает суммарный вес вопросов, количество ответов на которые приняты на этапах j,j+1,…,N; при этом y1=W и yj=0,1,…,W при j=2,3,…,N.
3. Варианты решения kj на этапе j описываются количеством вопросов типа j. Значение kj заключено в пределах от нуля до [W/wj], где [W/wj]-целая часть числа (W/wj).
Пусть fi(yi)-максимальный суммарный вес вопросов, ответы на которые приняты на этапах j,j+1,…,N при заданном состоянии yj.
Рекуррентное соотношение (для процедуры обратной прогонки) имеет следующий вид:
Заметим, что максимальное допустимое значение kj ограничено величиной [yj/wj]. Это позволяет автоматически исключать все не являющиеся допустимыми варианты при заданном значении переменной состояния yj.
Решение исходной задачи (см. приложении А):
Этап 8.
Этап 7.
Этап 6.
Этап 5.
Этап 4.
Этап 3.
Этап 2.
Этап 1.
Оптимальное решение определяется теперь следующим образом. Из условия W=30 следует, что первый этап решения задачи при y1=30 дает оптимальное решение k1=0, которое означает, что на 0 (нуль) вопросов 1-го типа будут даны ответы. Далее находим:
y1=30 |
k1=0 |
y2=y1-2*k1=30 |
k2=0 |
y3=y2-4*k2=30 |
k3=4 |
y4=y3-k3=26 |
k4=1 |
y5=y4-4*k4=22 |
k5=0 |
y6=y5-7*k5=22 |
k6=0 |
y7=y6-5*k6=22 |
k7=5 |
y8=y7-3*k7=7 |
k8=7 |