ГеометрияРефераты >> Математика >> Геометрия
Когда будем ниже говорить о «центре тяжести нескольких материальных точек», то его можно себе наглядно представлять как центр параллельных сил, а «объединение нескольких материальных точек» — как равнодействующую нескольких параллельных сил, приложенную в центре параллельных сил.
Для геометрических приложений важно, что почти всё основное, что мы говорили относительно материальных точек с положительными массами, возможно обобщить на случай материальных точек с произвольными вещественными массами.
Понятие центра тяжести двух материальных точек (с произвольными вещественными массами) можно ввести так.
Центром тяжести двух материальных точек (А, а) и (B, b) (рис. 6) называется такая точка С, лежащая на оси АВ (положительное направление от А к В), которая удовлетворяет условию: а×АС=b×СВ.
А В С
рис. 7 |
Центр тяжести С двух материальных точек (А, а) и (B, b)будет лежать между А и В, лишь если «массы» а и b одного знака. Если а и b разных знаков, то С вне отрезка АВ (рис. 7).
Лишь в одном случае центр тяжести материальных точек (А, а) и (B, b) с различными носителями (А¹В) не существует, — именно, когда массы их противоположны по знаку, но не равны по абсолютной величине (то есть, если а= -b ¹ 0). В связи с этим мы будем называть две материальные точки вида (А, а) и (В, -а) (А¹В, а¹0) механической парой.
Этот случай можно себе представить как предельный для того случая, когда а¹-b, но а® -b. Если а¹-b, а¹0, b¹0, то можно написать , т.е. . Если а ® -b, то а +b® 0 и, следовательно, АС ®¥, то есть точка С неограниченно удаляется вдоль прямой АВ. Поэтому иногда говорят, что если a = -b, то центр тяжести двух материальных точек (А, а) и (B, b) «лежит в бесконечно удалённой точке прямой АВ».
Оставаясь здесь в рамках элементарной геометрии, мы будем эту фразу рассматривать как образное выражение того, что центра тяжести в данном случае нет.
Если одна из двух материальных точек является незагруженной, а «масса» другой материальной точки отлична от нуля, то их центр тяжести совпадает с носителем загруженной точки. В связи с этим имеет смысл все незагруженные точки считать равными, то есть считать, что при любых А и В ( А, 0) ºº (В, 0).
Задача о нахождении центров тяжести двух незагруженных точек является неопределенной: существует бесконечно много точек, которые можно рассматривать в качестве центров тяжестей этих двух точек. Мы не будем останавливаться на рассмотрении этого случая.
Идея барицентрических координат.
|
Выберем на плоскости произвольный треугольник АВС (рис. 8), который в дальнейшем назовем координатным, или базисным треугольником Мебиуса. Пусть р¹0 и (Р, р) ¾ произвольная материальная точка, лежащая в плоскости этого треугольника. Тогда возможно подобрать для точек А, В, С такие массы а, b, с (не обязательно положительные), чтобы объединением трех материальных точек (А, а), (В, b) и (С, с) служила точка (Р, р). Это можно себе представить следующим образом.
Ясно, что не может быть одновременно РА½½ ВС, РВ½½ СА, РС½½ АВ. Пусть, для определённости, РА и ВС не параллельны. Соединим Р с А и отметим точку А1, в которой АР встречает прямую ВС. Подберём три действительных числа а, b, c так, чтобы
b×BA1 = c×A1C,
a×AP = (b + c)×PA1,
a + b + c = p.
Это всегда возможно сделать. Тогда
(P, p) = (A, a) + (B, b) + (C, c).
Обратно, если возьмём три произвольных действительных числа a, b, c, причём a + b + c ¹ 0, то существует вполне определённая материальная точка (Р, р) такая, что (Р, р) = (A, a) + (B, b) + (C, c).
Таким образом, каждую материальную точку Рº(Р, р) на плоскости можно вполне охарактеризовать тремя числами, а именно тремя массами a, b и с, которые надо поместить в вершинах базисного треугольника, чтобы точка Р оказалась объединением трёх образующихся при этом материальных точек (A, a), (B, b) и (C, c). Эти три числа называют барицентрическими координатами материальной точки Р («барицентр» означает «центр тяжести»): а — первая барицентрическая координата, b — вторая, с — третья. Понятно, что те же три числа a, b, c определяют также положение носителя материальной точки Р. Поэтому эти три числа называют также барицентрическими координатами (геометрической) точки Р.
Таким образом, выражение «барицентрическими координатами точки Р служат числа a, b, c» означает только то, что имеет место равенство
(A, a) + (B, b) + (C, c) = (P, p),
где
p = a + b + c.
Если массы трёх материальных точек увеличить (или уменьшить) в одно и то же число раз, то от этого положение их центра тяжести не изменится. Поэтому барицентрическими координатами геометрической точки Р будут также числа k×a, k×b, k×c, где k — любое действительное число, не равное нулю.
Итак, геометрическая точка Р (в отличие от материальной точки Р) имеет бесконечно много троек барицентрических координат, причём каждая из этих троек может быть получена из какой-либо одной тройки (a, b, c) путём умножения на какую-либо константу k, отличную от нуля.