Геометрия
Рефераты >> Математика >> Геометрия

т.е. сумму K=МомSA1+ МомSA2+ МомSA3+…+ МомSAn или, подробнее,

K=m1×SA1+ m2×SA2+ m3×SA3+…+ mn×San.

Пример. Если система состоит из трёх точек (A1, 1), (A2, 4), (A3, 9) и SA1=1, SA2=2, SA3=3 (рис. 4), то статический момент системы равен

K=1×1 + 4×2 + 9×3 = 36.

Понятно, что в системе SGC момент будет иметь размерность г×см. Но мы ранее договорились, что размерность будем каждый раз подразумевать, но нигде не указывать.

SA1 А2A3

рис. 4

В наших рассуждениях основными объектами были «материальные точки». С точки зрения математики материальная точка — это комплекс, состоящий из геометрической точки и некоторого (положительного) числа.

В математике не раз приходится сталкиваться с таким явлением: комплекс из двух каких-то математических объектов рассматривают как некоторый новый объект, который затем уже подвергается специальному изучению. Так, например, в курсе алгебры вводится понятие комплексного числа как комплекса (пары) двух действительных чисел.

В строгих курсах геометрии таким образом вводится, например, понятие отрезка как комплекса (пары) двух точек; понятие угла может быть введено сходным образом: угол можно рассматривать как комплекс двух лучей с общим началом.

Если имеется у нас какая-либо материальная точка Аº(A, m), то мы (геометрическую) точку A будем иногда называть носителем или аффиксом этой материальной точки, а число mбудем по-прежнему называть массой этой материальной точки.

Равенству вида (A, a)º(B, b) мы придаём такой смысл: две материальные точки имеют один и тот же носитель (AºB) и равные массы (aºb).

Решение почти всех ранее рассмотренных задач опиралось на то, что мы «объединяли некоторые материальные точки в их центре тяжести»; точнее, заменяли некоторые материальные точки их объединением. При этом под объединением двух материальных точек (A, a) и (B, b) мы понимали некоторую новую материальную точку , a+b), где С — центр тяжести двух данных материальных точек. Можно было бы так сказать: объединением двух материальных точек называется такая новая материальная точка, носителем которой является центр тяжести данных материальных точек и масса которых равна сумме масс этих материальных точек.

Вместо «объединения» можно употреблять выражение «сумма».

Если материальная точка Сº(С, с) является объединением двух других материальных точек Aº(A, a) и Bº(B, b), то мы будем это записывать так:

(A, a) + (B, b) = (C, c)

или, короче,

A + B = C.

Мы не будем исключать и тот случай, когда две материальные точки имеют один и тот же носитель. В этом случае, естественно, будем считать носителем объединения их общий носитель. Таким образом, (А, а) + (А, b) = (A, a+b).

У нас возникает своеобразное исчисление, своеобразная алгебра. В этой алгебре имеет место переместительный закон: A + B = B + A. Это следует из самого определения центра тяжести двух материальных точек. Имеет место также сочетательный закон:

(A1 + A2) + A3 = A1 + (A2 + A3),

или, иначе,

[(A1, m1) + (A2, m2)] + (A3, m3) = (A1, m1) + [(A2, m2) + (A3, m3)].

Подробнее: Найдём ли мы сначала объединение ­­­A12 двух материальных точек А1 и А2 и затем найдём объединение этой материальной точки А12 с третьей материальной точкой А3, или сначала найдём объединение А23 материальных точек А2 и А3, а затем найдём объединение материальных точек А1 и А23, в обоих случаях мы придём к одному и тому же результату, к одной и той же материальной точке.

Понятно, что смысл этого утверждения состоит в том, что центр тяжести трёх материальных точек не зависит от порядка, в котором объединяются эти точки.

В наших рассуждениях «материальная точка» (A, m) выступала как комплекс, состоящий из некоторой геометрической точки А и некоторого положительного числа т. Это число т мы до сих пор называли массой. Однако его можно было бы назвать и каким-либо другим словом, скажем, «весом». Все наши предыдущие рассуждения останутся, конечно, в силе, если заменить слово «масса» словом «вес». Мы бы в таком случае уже не говорили, например, «рассмотрим материальную точку (А, т) с массой т», а сказали бы: « рассмотрим материальную точку (А, т) с весом т».

До сих пор мы наглядно представляли материальную точку (А, т) в виде материального шарика, размерами которого можно пренебречь, имеющего массу т. Но с таким же успехом мы могли бы наглядно представить ту же материальную точку в виде такого же шарика с весом т.

Мы далее рассматривали центр тяжести двух материальных точек вида (A, a) и (B, b) и определяли его по правилу рычага. Если мы хотим этот центр тяжести наглядно представить в виде центра тяжести двух шариков, помещённых в точках А и В и весящих соответственно а и bединиц, то нужно сделать несколько оговорок (которые, впрочем, само собой подразумеваются). Во всяком случае эти шарики должны быть на небольшом расстоянии друг от друга, настолько небольшом, чтобы можно было без чувствительной погрешности считать, что при свободном падении они будут перемещаться параллельно и с одним и тем же ускорением. Кроме того, если шарики из различных материалов, то важно, чтобы удельным весом газа или жидкости, заполняющей окружающую их среду, возможно было пренебречь. Такие условия практически будут соблюдены, например, если мы не выйдем за пределы, скажем, комнаты или даже города.

До сих пор, рассматривая материальную точку, то есть пару вида (А, т),мы всегда полагали, что её «масса» (или «вес») — положительное число. Для решения некоторых геометрических задач весьма полезно рассмотреть и такой случай, когда это число т может быть произвольным действительным числом. Такую пару мы, сохраняя старую терминологию, будем по-прежнему называть материальной точкой, а для числа т сохраним старое название «масса» (или «вес»). Как же себе наглядно представить «материальную точку» с отрицательной «массой»?

Приведём одну конкретную физическую картину, которая позволит читателю наглядно представить материальные точки с произвольными вещественными «массами».


Страница: