Высшая математикаРефераты >> Математика >> Высшая математика
Тогда общее решение заданного неоднородного линейного уравнения имеет вид: .
Ответ: |
. |
Дополнительно Часть I.
Задание №7. Вопрос №1.
Найти предел: .
Решение:
.
Ответ: |
Заданный предел равен . |
Задание №9. Вопрос №8.
Найдите уравнение асимптот и постройте их графики:
.
Решение:
1. Область определения данной функции: .
2. Т.к. точка не входят в область значений функции, то это точка разрыва, а т.к. и , следовательно, уравнение – уравнение вертикальной асимптоты.
3. Уравнения правой и левой наклонных асимптот имеют вид: , где:
т.к. правая и левая наклонные асимптоты совпадают, то уравнение наклонной
асимптоты имеет вид: .
Для построения графиков асимптот (см. рис. 5), найдем
точки пересечения наклонной асимптоты с осями
координат:
С осью OX: точка,
с осью OY: точка
Ответ: |
и – уравнения асимптот заданной функции. |
Задание №11. Вопрос №6.
Исходя из определения производной, докажите: .
Решение:
Т.к. по определению производная функции в точке вычисляется по формуле , тогда приращение в точке : .
Следовательно .
Ответ: |
. |
Задание №15. Вопрос №1.
Найдите пределы, используя правило Лопиталя: .
Решение:
.
Ответ: |
Заданный предел равен . |
Дополнительно Часть II.
Задание №7. Вопрос №1.
Написать в точке уравнение касательной плоскости к поверхности, заданной уравнением: .
Решение:
Уравнение касательной плоскости к графику функции в точке имеет вид: . Поэтому, продифференцируем заданное уравнение поверхности: . Подставив в полученное уравнение координаты точки вместо значений переменных, и заменив дифференциалы переменных на их приращения, получим:
.
Ответ: |
Уравнение касательной плоскости к заданной поверхности в заданной точке имеет вид . |
Задание №9. Вопрос №8.
Найти наибольшее и наименьшее значение функции в области: .
Решение:
Т.к. заданная функция дифференцируется в замкнутой ограниченной области, то свое наибольшее/наименьшее значение она достигает или в стационарной точке внутри области дифференцирования, или на границе области.
Найдем стационарные точки заданной функции, для этого решим систему:
, точка не принадлежит заданной области дифференцирования, значит стационарных точек внутри области нет, следовательно, наибольшее/наименьшее значение функцией достигается на границе области дифференцирования. Граница области ограничена окружностями и . Найдем наибольшее/наименьшее значение на границах области дифференцирования. Для этого составим функцию Лагранжа: