Исследование товара
Рефераты >> Маркетинг >> Исследование товара

В табл.1 приводятся данные объема продаж велосипедов определенной компании за 17 лет.

Таблица 1 Объем продажи велосипедов.

Год

Годовой объем продаж (в 1000 долларов)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1340 1221 909 1501 1350 1253 1561 1435 1114 1239 1453 1890 2220 2450 2790 3450 3759 ????

Необходимо определить прогнозную оценку объема продаж на восемнадцатый год.

Представив в графическом виде данные табл. 1, можно с помощью метода наименьших квадратов подобрать прямую линию, в наибольшей степени соответствующую полученным данным (рис.2) и определить прогнозную величину объема продаж.

В то же время более внимательное рассмотрение рис.2 позволяет сделать вывод о том, что не все точки близко расположены к прямой. Особенно эти расхождения велики для последних лет, а верить последним данным, видимо, следует с большим основанием.

В данном случае можно применить метод экспоненциального сглаживания, назначая разные весовые коэффициенты (большие для последних лет) данным для разных лет [3]. В последнем случае прогнозная оценка в большей степени соответствует тенденциям последних лет.

Рисунок 2 Прогнозирование объема продаж велосипедов.

Прогнозирование объема продаж

Циклический характер колебаний статистических показателей характеризуется длительным периодом (солнечная активность, урожайность отдельных культур, экономическая активность). Такие явления обычно не являются предметом исследования маркетологов, которых обычно интересует динамика проблемы на относительно коротком интервале времени.

Сезонные колебания показателей имеют регулярный характер и наблюдаются в течение каждого года. Они являются предметом изучения маркетологов (спрос на газонокосилки, на отдых в курортных местах в течение года, на телефонные услуги в течение суток и т.д.). Поскольку выявленные закономерности носят регулярный характер, то их вполне обоснованно можно использовать в прогнозных целях.

В отличие от прогноза на основе регрессионного уравнения прогноз по тренду учитывает факторы развития только в неявном виде, и это не позволяет «проигрывать» разные варианты прогнозов при разных возможных значениях факторов, влияющих на изучаемый признак. Зато прогноз по тренду охватывает все факторы, в то время как в регрессионную модель в лучшем случае невозможно включить в явном виде более 10-20 факторов.

Временные ряды помимо простой экстраполяции могут использоваться также в целях более глубокого прогнозного анализа, например, объема продаж. Целью анализа в данном случае является разложение временного ряда продаж на главные компоненты, измерение эволюции каждой составляющей в прошлом и ее экстраполяция на будущее. В основе метода лежит идея стабильности причинно-следственных связей и регулярность эволюции факторов внешней среды, что делает возможным использование экстраполяции. Метод состоит в разложении временного ряда на пять компонент:

  • структурная компонента, или долгосрочный тренд, обычно связанный с жизненным циклом товара на исследуемом рынке;
  • циклическая компонента, соответствующая колебаниям относительно долгосрочного тренда под воздействием среднесрочных флуктуаций экономической активности;
  • сезонная компонента, или краткосрочные периодические флуктуации, обусловленные различными причинами (климат, социально-психологические факторы, структура нерабочих дней и т.д.);
  • маркетинговая компонента, связанная с действиями по продвижению товара, временными снижениями цен и т.п.;
  • случайная компонента, отражающая совокупное действие плохо изученных процессов, не представимых в количественной форме.

Для каждой компоненты рассчитывается параметр, основанный на наблюдавшихся закономерностях: долгосрочном темпе прироста продаж, конъюнктурных флуктуациях, сезонных коэффициентах, специфичных факторах (демонстрации, мероприятия по стимулированию сбыта и т.п.). Затем эти параметры используют для составления прогноза.

Понятно, что такой прогноз имеет смысл как краткосрочный, на период, в отношении которого можно принять, что характеристики изучаемого явления существенно не изменяются. Это требование часто оказывается реалистичным вследствие достаточной инерционности внешней среды.

К числу главных ограничений экстраполяционных методов следует отнести следующее.

Большинство прогнозных ошибок связано с тем, что в момент формулирования прогноза в более или менее явной форме подразумевалось, что существующие тенденции сохранятся в будущем, что редко оправдывается в реальной экономической и общественной жизни. Экстраполяционные методы не позволяют действительно «предсказать» эволюцию спроса, поскольку неспособны предвидеть какие-либо «поворотные точки». В лучшем случае они способны быстро учесть уже произошедшее изменение. Поэтому их называют «адаптивной прогнозной моделью». Тем не менее, для многих проблем управления такой «апостериорный» прогноз оказывается полезным при условии, что имеется достаточно времени для адаптации и факторы, определяющие уровень продаж, не подвержены резким изменениям.

Так в 40-х годах нашего века американские специалисты предсказывали: производство легковых автомобилей в США достигнет насыщения, и будет составлять 300 000 штук в месяц. Но уже в 1969 году их в США производилось более 550 000 штук. В настоящее время эта цифра возросла еще в 1,2 – 1,3 раза.

В 1983-1984 гг. на американский рынок были введены 67 новых моделей персональных компьютеров, и большинство фирм рассчитывало на взрывной рост этого рынка. По прогнозам, которые давали в то время маркетинговые фирмы, число установленных компьютеров в 1988 г. должно было составить от 27 до 28 миллионов. Однако к концу 1986 г. было поставлено только 15 миллионов, поскольку условия использования компьютеров радикально изменились, а этого никто не предвидел.

Эти ошибки в прогнозах носили не математический, а чисто логический характер: ведь при прогнозировании использовались временные ряды, достаточно хорошо отражающие имеющийся в то время статистический материал.

Развитие общества определяется очень большим числом факторов. Эти факторы сильно связаны между собой и далеко не все они поддаются непосредственному измерению. Кроме того, по мере развития общества порой неожиданно начинают вступать в действие все новые и новые факторы, которые раньше не учитывались.

Временные ряды могут становиться ненадежной основой для разработки прогнозов по мере того, как экономика приобретает все более международный характер и все в большей степени подвергается крупной технологической перестройке. В связи с этим необходимо в первую очередь развивать способности предвидения, что подразумевает хорошее знание ключевых факторов и оценку чувствительности организации к внешним угрозам.


Страница: