Исследование товара
2.4.Прогнозирование спроса, основанное на методах математической статистики.
Можно выделить два метода разработки прогнозов, основанных на методах математической статистики: экстраполяцию и моделирование.
В первом случае в качестве базы прогнозирования используется прошлый опыт, который пролонгируется на будущее. Делается предположение, что система развивается эволюционно в достаточно стабильных условиях. Чем крупнее система, тем более вероятно сохранение ее параметров без изменения, конечно, на срок не слишком большой. Обычно рекомендуется, чтобы срок прогноза не превышал одной трети длительности исходной временной базы.
Во втором случае строится прогнозная модель, характеризующая зависимость изучаемого параметра от ряда факторов, на него влияющих. Она связывает условия, которые, как ожидается, будут иметь место и характер их влияния на изучаемый параметр.
Данные модели не используют функциональные зависимости; они основаны только на статистических взаимосвязях.
При построении прогнозных моделей чаще всего используется парный и множественный регрессионный анализ; в основе экстраполяционных методов лежит анализ временных рядов.
Парный регрессионный анализ основан на использовании уравнения прямой линии:
y = a +bx, (2.4.1)
где y – оцениваемая или прогнозируемая зависимая переменная (результативный признак);
a – свободный член уравнения;
x – независимая переменная (факторный признак), используемая для определения зависимой переменной.
b – коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения – вариация y, приходящаяся на единицу вариации x.
Коэффициенты a и b рассчитываются на основе наблюдений величин y и x с помощью метода наименьших квадратов [3].
Предположим, что торговый агент продает детские игрушки, посещая квартиры случайным образом. Отсутствие посещения какой-то квартиры означает отсутствие продажи или a = 0. Если в среднем каждый десятый визит сопровождается продажей на 62 доллара, то стоимость продажи на один визит составит 6,2 доллара или b = 6,2.
Тогда y = 0 + 6,2x.
Таким образом, можно ожидать, что при 100 визитах доход составит 620 долларов. Надо помнить, что эта оценка не является обязательной, а носит вероятностный характер.
Анализ на основе множественной регрессии основан на использовании более чем одной независимой переменной в уравнении регрессии. Это усложняет анализ, делая его многомерным. Однако регрессионная модель более полно отражает действительность, так как в реальности исследуемый параметр, как правило, зависит от множества факторов.
Так, например, при прогнозировании спроса идентифицируются факторы, определяющие спрос, определяются взаимосвязи, существующие между ними, и прогнозируются их вероятные будущие значения; из них при условии реализации условий, для которых уравнение множественной регрессии остается справедливым, выводится прогнозное значение спроса.
Все что касается множественной регрессии, концептуально является идентичным парной регрессии, за исключением того, что используется более чем одна переменная. Под этим углом зрения слегка изменяется терминология и статистические расчеты.
Многофакторное уравнение множественной регрессии имеет следующий вид:
, (2.4.2)
где y – зависимая или прогнозируемая переменная;
– независимая переменная;
– свободный член уравнения;
– коэффициент условно-чистой регрессии;
i = 1, m;
m – число независимых переменных (факторных признаков).
Термин «коэффициент условно-чистой регрессии» означает, что каждая из величин b измеряет среднее по совокупности отклонение зависимой переменной (результативного признака) от ее средней величины при отклонении зависимой переменной (фактора) x от своей средней величины на единицу ее измерения и при условии, что все прочие факторы, входящие в уравнение регрессии, закреплены на средних значениях, не изменяются, не варьируются.
Ограничением прогнозирования на основе регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится «внешняя среда» протекающего процесса, прежнее уравнение регрессии результативного признака на факторный потеряет свое значение.
Следует соблюдать еще одно ограничение: нельзя подставлять значения факторного признака, значительно отличающиеся от входящих в базисную информацию, по которой вычислено уравнение регрессии. При качественно иных уровнях фактора, если они даже возможны в принципе, были бы иными параметры уравнения. Можно рекомендовать при определении значений факторов не выходить за пределы трети размаха вариации, как за минимальное, так и за максимальное значение признака-фактора, имеющееся в исходной информации.
Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения фактора, называют точечным прогнозом. Вероятность точной реализации такого прогноза крайне мала. Необходимо сопроводить его значение средней ошибкой прогноза или доверительным интервалом прогноза, в который с достаточно большой вероятностью попадают прогнозные оценки. Средняя ошибка является мерой точности прогноза на основе уравнения регрессии. Существуют усовершенствованные методы парной регрессии, в какой-то степени преодолевающие его недостатки [2], [3].
Простейшими методами прогнозирования спроса на основе статистической маркетинговой информации являются экстраполяционные методы, основанные на анализе временных рядов.
Многие данные маркетинговых исследований представляются для различных интервалов времени, например, на ежегодной, ежемесячной и др. основе. Такие данные называются временными рядами. Анализ временных рядов направлен на выявление трех видов закономерностей изменения данных: трендов, цикличности и сезонности, выявление причин изменения спроса в прошлом с последующим переносом полученных закономерностей на будущее.
Тренд характеризует общую тенденцию в изменениях показателей ряда. Те или иные качественные свойства развития выражают различные уравнения трендов: линейные, параболические, экспоненциальные, логарифмические, логистические и др. После теоретического исследования особенностей разных форм тренда необходимо обратиться к фактическому временному ряду, тем более что далеко не всегда можно надежно установить, какой должна быть форма тренда из чисто теоретических соображений. По фактическому динамическому ряду тип тренда устанавливают на основе графического изображения, путем осреднения показателей динамики, на основе статистической проверки гипотезы о постоянстве параметра тренда.