Логические парадоксы
Рассел одним из первых предложил вариант решения “своего” парадокса. Предложенное им решение, получило название "теории типов": множество (класс) и его элементы относятся к различным логическим типам, тип множества выше типа его элементов, что устраняет парадокс Рассела (теория типов был использована Расселом и для решения знаменитого парадокса "Лжец"). Многие математики, однако, не приняли расселовское решение, считая, что оно накладывает слишком жесткие ограничения на математические утверждения.
Аналогично обстоит дело и с другими логическими парадоксами. «Антиномии логики, — пишет фон Вригг, — озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения, сколько как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления».
Список используемой литературы:
1 Френкель А.А., Бар-Хиллел И. “Основания теории множеств”
2. B.Russell. “Introduction to mathematical philosophy”.
3. Russell B. “The principles of mathematics”.
4. Задоя А.И. “Введение в логику”
5. Гильберт Д. - Аккерман В., “Основы теоретической логики”.
6. Лакофф Дж. “Прагматика в естественной логике. Новое в лингвистике”.
7. Якобсон Р. “Взгляды Боаса на грамматическое значение.”