Логика умозаключения
Рефераты >> Логика >> Логика умозаключения

Таблица 1

а

*

а

ь

а-*Ь

(a-*b)\ a

((a-*b)f\a)-*b

(а-»Ь)ЛЬ

((а-»Ь)ЛЬ)-»а

И

и

Л

л

И

И

И

Л

И

И

л

Л

и

л

Л

и

л

И

Л

и

И

л

и

л

и

л

и

л

л

И

и

и

л

и

и

и

Таблицу для неправильных модусов предоставляем построить читателю самому. В ней наряду со знаками «И» («истина») мы увидим и знаки «Л» («ложь»), а это значит, что выражения:

((а -» Ь) л Ь) -» а и ((а -* Ь) л ~а) -» Ъ не являются тождественно-истинными высказываниями, т. е. законами логики.

Если умозаключают от утверждения следствия к утверждению основания, то можно прийти к ложному заключению вследствие множественности причин, из которых может вытекать одно и то же следствие. Например, выясняя причину заболевания человека, надо перебрать все возможные причины: простудился, переутомил­ся, был в контакте в бациллоносителем и т. д.

§ 8. Разделительные умозаключения

Разделительным называется дедуктивное умозаключение, в котором одна или несколько посылок — разделительные (дизъюн­ктивные) суждения. Существуют чисто разделительные и раздели­тельно-категорические умозаключения.

В чисто разделительном умозаключении обе (или все) посыл­ки являются разделительными суждениями. В традиционной логике принята следующая его структура:

При этом конкретные (или, как иначе говорят, постоянные) высказывания в посылках -и заключении надо, как уже было отмечено, заменить переменными.

S есть А, или В, или С.

А есть или Л|. или А-^. _•

S есть или Л|, или А^, или В, или С.

В первом разделительном суждении каждое из трех простых суждений «5 есть Л», «S есть В», «S есть С» называется альтернативой. Из суждения «5 есть Л» образуются еще две альтернативы, которые составляют два члена новой дизъюнкции. Например:

Предложения бывают простыми или сложными. Сложные предложения бывают сложносочиненными или

сложноподчиненными. _

Предложения бывают простыми, или сложносочиненными, или сложноподчиненными.

/

В разделительно-категорическом умозаключении одна посыл­ка — разделительное суждение, другая — простое категорическое суждение. Этот вид умозаключения содержит два модуса.

Первый модус tollens). Пример его:

утверждающе отрицающий (ропепао

Внимание бывает произвольным или непроизвольным. Это внимание является непроизвольным. Это внимание не является произвольным.

Заменив конкретные высказывания в посылках и заключении переменными, получим запись этого модуса в терминах символи­ческой логики (с двумя членами дизъюнкции) в виде правила вывода:

a v b, a

или

а v b, b ~а

В этом модусе союз «или» употребляется как строгая дизъюнк­ция. Формулы, соответствующие этому модусу, имеют вид:

(1) ((а v b) л а) -* Ъ и (2) ((а v b) л b) - а.

Обе эти формулы выражают законы логики.

Если в этом модусе союз «или» взят как нестрогая дизъюнкция, то соответствующие формулы не будут выражать закон логики. Формулы:

(3) ((а v b) л а) -» Ъ и (4) ((а v b) л Ь) -» а не являются законами логики. Доказательство формул (1) и (3) дано в таблице 2.

Таблица 2

а

ь

*

avb

(аУЬ)ла

((avl>)Aa)-»b

(а'!/Ь)

<а^Ь)^а

((а'\/Ь)ла)-»Ь

И

и

л

И

И

Л

Л

Л

И

И

л

и

и

И

И

И

И

И

Л

и

л

и

л

и

И

л

и

л

л

и

л

л

и

л

л

и

Ошибки происходят из-за смешения соединительно-раздели­тельного и строго разделительного смыслов союза «или» в модусе ponendo tollens. Нельзя рассуждать, например, таким образом:

Учащиеся в контрольной работе по математике допускают или вычислитель­ные ошибки, или ошибки в эквивалентных преобразованиях, или ошибки в применении изученных алгебраических правил.


Страница: