Щелочные металлы
Рефераты >> Химия >> Щелочные металлы

Действительно, все щелочные металлы энергично, во многих случаях со взрывом, реагируют с водой и растворами кислот. Со щелочными растворами, в которых концентрация протонов мала, реакции идут более спокойно. Натрий, брошенный на поверхность воды, немедленно плавится за счет теплоты реакции, а иногда поджигает выделяющийся водород:

Na (кр) + H2O (ж) = NaOH (p-p) + 1/2H2­

Калий всегда реагирует с водой со вспышкой или со взрывом.

Соли щелочных металлов

Во всех своих соединениях щелочные металлы существуют в виде однозарядных катионов. Это относиться как к бинарным соединениям – галогенидам, халькогенидам, нитридам, карбидам, так и к солям со сложными многоатомными анионами.

Электростатические взаимодействия в ионных кристаллических решетках, содержащих однозарядные катионы, не очень велики, и энергии гидратации ионов оказываются вполне соизмеримы с ними. Поэтому, за редкими исключениями, соли щелочных металлов хорошо растворяются в воде. Хуже других растворимы фториды, карбонат и фосфат лития и перхлораты калия, рубидия и цезия.

При сильном нагревании солей, особенно при внесении их в пламя горящего водорода или бытового газа, происходит ряд процессов приводящих к появлению характерной окраски пламени.

Соли щелочных металлов находят самое широкое применение как в лабораторной практике, так и в различных областях промышленности и медицины.

Особенно широко используются карбонат и гидрокарбонат натрия, известные под общим названием сода. В технике и в быту различают кристаллическую соду Na2CO3×10H2O, кальцинированную соду – безводный карбонат Na2CO3 и питьевую соду – NaHCO3. Кроме того, следует упомянуть, что термин каустическая сода или каустик используется в технике для обозначения NaOH.

Основные потребители соды – стекольное, мыловаренное, бумажное, текстильное производство. Сода служит исходным продуктом для получения других солей натрия. Питьевая сода широко применяется в медицине. В лабораторной практике сода используется для нейтрализации кислот при несчастных случаях.

Приложение I

Таблица 1-1. Физико-химические свойства щелочных металлов

Величина

Li

Na

K

Rb

Cs

Энергия ионизации атомов I1,

Эв (кДж/моль)

5,4

(520)

5,1

(492)

4,3

(415)

4,2

(405)

3,9

(386)

Сродство атомов к электрону,

Эв (кДж/моль)

0,6

(57)

0,3

(29)

0,5

(48)

0,4

(39)

0,4

(39)

Электроотрицательность

1,0

1,0

0,9

0.9

0,9

Орбитальный радиус атома, нм

0,159

0,171

0,216

0,229

0,252

Энтальпия атомизации, кДж/моль

159

107

89

81

77

Температура плавления, °C

180

98

64

39

29

Температура кипения, °C

1340

886

761

690

672

Таблица 1-2. Основные сведения о щелочных металлах

Величина

3Li

11Na

19Ka

37Rb

55Cs

87Fr

Атомный вес

6,94

22,99

39,1

85,47

132,9

[223]

Валентные электроны

(2) 2s1

(8) 3s1

(8) 4s1

(8) 5s1

(8) 6s1

(8) 7s1

Металлический радиус

Атома, А

1,55

1,89

2,36

2,48

2,68

2,80

Радиус иона Э+, А

0,68

0,98

1,33

1,49

1,65

1,75

Энергия ионизации, Эв

Э° ® Э+

5,39

5,14

4,43

4,176

3,89

3,98

Содержание в земной

коре, ат. %

0,02

2,0

1,1

4×10-3

9×10-5

¾

Природные изотопы

7Li

92,7%

23Na

100%

39Ka

93,1%

85Rb

72,15%

183Cs

100%

¾

Таблица 1-3. Основные физические константы щелочных металлов

Величина

Li

Na

K

Rb

Cs

Плотность, г/см3

0,53

0,97

0,85

1,5

1,9

Твердость (алмаз 10)

0,6

0,4

0,5

0,3

0,2

S°298, дж/г-ат×град

28,1

51,2

64,2

76,2

84,3

Теплоемкость (H2O 1)

0,83

0,29

0,17

0,08

0,05

Теплопроводность

11

21

14

8

5

DH°возг.298,кДж/г-ат

159,3

92,0

90,4

82,1

78,2

Т. пл., °C

179

98

63

39

29

Т. кип., °C

1350

900

776

680

666


Страница: