Щелочные металлы
В технике калий получают натрийтермическим методом из расплавленного гидроксида или хлорида, рубидий и цезий – методами металлотермии и термическим разложением соединений. Калий и его аналоги хранят в запаянных сосудах. Калий, кроме того, можно сохранять в керосине.
Соединения с водородом
Щелочные металлы непосредственно взаимодействуют с водородом, образуя гидриды MH. Наиболее характерна эта реакция для лития:
2Li + H2 = 2LiH
В отличие от соединений с p-элементами, в которых водород находится в положительной степени окисления, в гидридах щелочных металлов он присутствует в степени окисления –1, образуя гидридный анион H. В отсутствие воды гидрид лития не реагирует с кислородом и галогенами, но вода немедленно его разлагает:
LiH + H2O = LiOH + H2
В этой реакции протон выступает в роли окислителя, а гидридный анион – восстановителя:
H+ + H- = H2
Гидриды остальных щелочных металлов менее устойчивы и более реакционноспособны. Их свойства определяются свойствами гидридного аниона, т.е. они являются сильными восстановителями.
Соединения с кислородом
Несмотря на то, что щелочные металлы во всех своих соединениях находятся в единственной степени окисления +1, каждый из них образует несколько бинарных соединений с кислородом. Кроме нормальных оксидов существуют пероксиды, супероксиды и озониды щелочных металлов.
Образование таких соединений обусловлено в большей мере свойствами кислорода, чем свойствам щелочных металлов.
Особенности элементов первой группы в образовании соединений с кислородом заключаются в том, что относительно большие однозарядные ионы обладают малым поляризующим действием и не дестабилизируют молекулярные ионы кислорода. При горении в кислороде получаются оксид лития, пероксид натрия и супероксиды остальных металлов:
2Li + 1/2O2 = Li2O 2Na + O2 = Na2O2 K + O2 = KO2
Пероксид лития может быть получен косвенным путем.
Оксиды получают из продуктов сгорания, нагревая их с соответствующим металлом:
Na2O2 + 2Na = 2Na2O2 KO2 + 3K = 2K2O
При взаимодействии калия, рубидия и цезия с озоном образуются озониды:
K + O2 = KO3
Большинство соединений с кислородом окрашено. Оксиды лития и натрия бесцветны, но уже Na2O2 имеет светло-желтую окраску, KO2 – оранжевого, RbO2 – темно-коричневого цвета.
Естественно, что нормальные оксиды щелочных металлов практически не проявляют ни окислительных, ни восстановительных свойств, тогда как остальные соединения являются сильными окислителями. Большая часть органических веществ (эфир, уксусная кислота, древесные опилки, хлопок) реагируют с Na2O2 или KO2 со вспышкой или со взрывом.
Пероксид натрия получают в промышленности в больших количествах путем сжигания металлического натрия в токе воздуха. При взаимодействии его с водой идет реакция гидролиза:
O22- + H2O = OH- + HO2-
Водные растворы пероксида натрия – достаточно сильные окислители и широко используются для отбеливания органических средств – древесной массы, тканей, меха.
Смесь пероксида натрия с супероксида калия применяется в изолирующих дыхательных аппаратах, так как в этом случае число молей выделившегося кислорода может быть равно числу молей поглощенного CO2:
Na2O2 + CO2 = Na2CO3 + 1/2O2
2KO2 + CO2 = K2CO3 + 3/2O2
При соотношении Na2O2 : KO2 = 1 : 2 поглощение CO2 происходит без изменения общего давления.
Гидроксиды
Все бинарные соединения элементов I группы с кислородом реагируют с водой, образуя гидроксиды. Например:
Li2O + H2O = 2LiOH, Na2O2 + 2H2O = 2NaOH + H2O,
2KO2 + 2H2O = 2KOH + H2O2 + O2
Гидроксиды щелочных металлов, называемые щелочами, в воде хорошо растворимы и практически полностью диссоциированы:
NaOH ( кр) = Na+ (p-p) + OH- (p-p)
В чистом виде это твердые бесцветные вещества, плавящиеся без разложения при @ 300 – 500 °C. Только гидроксид лития при нагревании выше Тпл = 445 °C теряет воду:
2LiOH = Li2O + H2O
Твердые гидроксиды и их концентрированные растворы сильно гигроскопичны, они жадно поглощают влагу и используются для осушения газов, не обладающих кислотными свойствами, в частности аммиака. Уже при обычных условиях твердые щелочи легко реагируют с «кислотами» газами – CO2, SO2, NO2, галогенами, галогено- и халькогеноводородами. Поэтому щелочи широко используются для поглощения таких газов и очистки от них кислорода, водорода, азота.
В силу этих причин как твердые щелочи, так и их растворы следует хранить в плотно закрытой посуде.
Наибольшее применение находит NaOH – едкий натр, который в громадных количествах получают в промышленности электролизом раствора хлорида натрия. Он широко применяется при производстве целлюлозы, искусственного шелка, при рафинировании жидких растительных масел и нефти, в мыловаренной промышленности, при синтезе красителей и в других химических производствах.
Растворы щелочных металлов
При обсуждении свойств типичных металлов – галогенов, серы, фосфора – неоднократно упоминалась их способность растворяться в некоторых растворителях, из которых затем они могут быть выведены в неизменном виде. Такими растворителями для неметаллов являются малополярные вещества вроде CS2, CCl4 или бензола. По мере перехода от молекулярных кристаллов к атомным и металлическим способность растворяться без химических реакций постепенно уменьшается, и простые вещества элементов IV и III группы переходят в раствор только в результате химического превращения.
В случае щелочных металлов связи в металлических кристаллах, осуществляемые единственным валентным электроном, настолько слабы, что появляется возможность их разрушения в результате молекулярных, а не химических, в полном смысле этого слова, взаимодействий.
Так, в отсутствие следов железа все щелочные металлы достаточно хорошо растворимы в жидком аммиаке. При этом образуются голубые или синие растворы, из которых металлы могут быть выведены в неизменном виде после испарения аммиака. Подобным же образом натрий и другие металлы могут быть растворены в некоторых органических растворителях – аминах и эфирах. Все эти растворы обладают хорошей электропроводимостью, что говорит о ионной природе растворенных частиц. Различными методами доказано, что во всех случаях имеет место равновесие:
M (кр) ó M (p-p) ó M+ (p-p) + e- (p-p)
Как катион металла, так и электрон сильно сольватируются молекулами растворителя; например, в аммиаке образуются ионы Na(NH3)4+, и это приводит к общему выигрышу энергии при растворении.
Очевидно, что сольватированные электроны в заметных количествах не могут существовать в растворах, содержащих протоны, так как непременно должна идти реакция
H+ (p-p) + e- (p-p) = 1/2H2
или, иначе, обмен электроном между атомом металла и протоном:
M (кр) + H+ (p-p) = M+ (p-p) + 1/2H2
В водных растворах этот процесс количественно характеризуется стандартным восстановительным потенциалом. Для щелочных металлов E°k практически одинаковы и равны –2,9В. Такие большие отрицательные значения E° говорят о том, что ни при каких условиях щелочные металлы не могут существовать с водой и любыми водными растворами, а значит, не могут быть восстановлены из водного раствора.