Химический эксперимент по неорганической химии в системе проблемного обучения
Форма работы: Работа выполняется в группах (4–5 человек) или в парах учащихся.
Оборудование и реактивы: растворы веществ: HCl, HNO3, H2SO4, NaOH, KOH, Ba(OH)2, NaCl, K2SO4, Na2CO3, CuSO4, CuCl2, Pb(NO3)2, FeCl3, Na2S, K2SO3, CH3COONa, KBr, NaNO3, лакмус, фенолфталеин.
Ход опыта:
В подписанные пробирки с предложенными веществами прилить соответствующие индикаторы.
Учащиеся знакомы со свойствами кислот и щелочей изменять окраску индикаторов. Поэтому они быстро проводят соответствующие реакции с кислотами и щелочами и объясняют изменение окраски лакмуса и фенолфталеина взаимодействием индикатора с ионами H+ и OH–. При диссоциации средних солей образуются катионы металлов и анионы кислотных остатков, которые с индикаторами не взаимодействуют.
Проблема возникает тогда, когда цвет индикатора изменяется в растворах карбоната натрия и сульфата меди (II). Причем цвет лакмуса в растворе Na2CO3 становится синим, а в растворе CuSO4 – красным.
Учитель: составим таблицу «Окраска лакмуса в растворах солей»
Соль |
Окраска раствора соли при добавлении индикатора (лакмуса) |
Реакция среды |
Na2CO3 |
синий |
щелочная |
CuSO4 |
красный |
кислая |
Учащиеся: Для объяснения наблюдаемых явлений учащиеся выдвигают ряд гипотез, одна из которых – посторонние примеси в растворах солей Na2CO3 и CuSO4.
Учитель: Для проверки этой гипотезы учитель предлагает для анализа растворы других солей: CuCl2, Pb(NO3)2, FeCl3, Na2S, K2SO3, CH3COONa, KBr, NaNO3.
Учащиеся: продолжают таблицу «Окраска лакмуса в растворах солей»
Соль |
Окраска раствора соли при добавлении индикатора (лакмуса) |
Реакция среды |
Na2CO3 |
синий |
щелочная |
CuSO4 |
красный |
кислая |
CuCl2 |
красный |
кислая |
Pb(NO3)2 |
красный |
кислая |
FeCl3 |
красный |
кислая |
Na2S |
синий |
щелочная |
K2SO3 |
синий |
щелочная |
CH3COONa |
синий |
щелочная |
KBr |
фиолетовый |
нейтральная |
NaNO3 |
фиолетовый |
нейтральная |
Учитель: Таким образом, все соли можно разделить на три группы:
1-я группа – соли, растворы которых ведут себя по отношению к лакмусу как кислоты (CuSO4, CuCl2, Pb(NO3)2, FeCl3);
2-я группа – соли, растворы которых ведут себя по отношению к лакмусу и фенолфталеину как щелочи (Na2CO3, Na2S, K2SO3, CH3COONa);
3-я группа – соли, растворы которых не изменяют окраску индикатора (KBr, NaNO3).
Гипотезу о посторонних примесях можно считать отвергнутой.
Учитель: Почему растворы солей первой группы изменяют фиолетовую окраску раствора лакмуса на красную?
Учащийся: Значит, в этих растворах есть ионы H+.
Учитель: Откуда ионы H+ в растворе, если вы смешивали соль и воду?
Учащийся: Наверное, из воды.
Учитель: Как от воды могли отделиться ионы H+?
Учащийся: Видимо, какая-то частица соли отрывает от молекулы воды частицу OH–. Отрицательную частицу от молекулы воды может оторвать положительная частица из соли.
Учитель: Что же общего у катионов Cu2+, Pb2+, Fe3+? Почему именно они присоединяют гидроксид-ионы? Почему этого не происходит в случае катионов Na+, K+?
Учащийся: Гидроксиды Сu(OH)2, Pb(OH)2, Fe(OH)3 – cлабые основания, а NaOH, KOH – сильные. Сильные основания в растворе полностью диссоциируют на ионы.
Растворы второй группы солей изменяют фиолетовую окраску лакмуса на синюю. Значит, в их растворах есть гидроксид-ионы. Остатки слабых электролитов – анионы кислотных остатков – взаимодействуют с молекулами воды с образованием ионов OH–. В растворах солей третьей группы нет свободных ионов H+ и OH– . С водой не взаимодействуют остатки сильных электролитов (кислот и оснований).
В результате подобных рассуждений учащиеся самостоятельно приходят к выводам.
1. Если соль образована сильной кислотой и слабым основанием, реакция ее раствора будет кислая. Причина кислой среды – взаимодействие катиона (остатка слабого основания) с молекулами воды. Такое взаимодействие называется гидролизом по катиону.
Fe3+ + 3НОН → Fe(OH)3 + 3H+
2. Если соль образована слабой кислотой и сильным основанием, реакция ее раствора будет щелочная. Причина щелочной среды – взаимодействие аниона (остатка слабой кислоты) с молекулами воды. Этот процесс называется гидролизом по аниону.
CO32- + 2HOH → H2CO3 + 2OH–
3. Если соль образована сильной кислотой и сильным основанием, реакция ее раствора будет нейтральной. Катионы металла и анионы кислотного остатка таких солей не образуют прочных связей с молекулами воды. Как следствие, в растворах таких солей нет ионов H+ и OH–.
Учитель: Реакция солей, образованных сильной кислотой и сильным основанием обратима, так как в ходе неё не образуется слабый электролит.
KBr + HOH <=> KOH + HBr
Таким образом, соли, образованные сильной кислотой и сильным основанием имеют нейтральную реакцию среды, но гидролизу не подвергаются
Учащийся: А как ведут себя в растворе соли, образованные слабым основанием и слабой кислотой?
Учитель: Попробуйте самостоятельно спрогнозировать результат опыта и аргументировать свой прогноз.
Учащийся: Вероятно, реакция раствора такой соли будет нейтральной, ведь ионы H+, образованные при взаимодействии катиона – остатка слабого электролита – с молекулами воды, будут связываться ионами OH–, образованными при гидролизе по аниону.