Физико-химические основы технологии поликонденсационного наполнения базальто-, стекло- и углепластиков
Пористая структура нитей определяет их сорбционные свойства, а также кинетические и динамические характеристики сорбционных процессов. В исследованиях для изучения сорбционных свойств БН, СН и УН использовали теорию объемного заполнения микропор (ТОЗМ), которая описывается уравнением lg nil = lg ni0l–(0,434/En)*An, где nil, ni0l –факти-ческая и предельная величина адсорбции, ммоль/г; E–характеристическая энергия, Дж/моль; A=RTlnCS/C–дифференциальная мольная работа адсорбции, Дж/моль; n–ранг уравнения ТОЗМ.
Применение ТОЗМ для описания адсорбционных равновесий в системе нить-фенол-растворитель дало возможность описать процессы адсорбции при различных температурах на УН, БН и СН и рассчитать параметры пористой структуры этих нитей (табл.1), используя основное уравнение этой теории. По величине пор, предельно адсорбируемым объемам и характеристической энергии изучаемые нити образуют ряд УН>БН>СН.
Таблица 1
Параметры пористой структуры БН, СН и УН, рассчитанные по уравнению ТОЗМ для систем нить-фенол-растворитель
Нить |
Температура, 0С |
nil, ммоль/г |
Е, кДж/моль |
W0, см3/г |
X, 0А |
УН |
20 |
0,150 |
13,130 |
0,0107 |
9,34 |
30 |
0,156 |
13,290 |
0,1165 |
10,74 | |
40 |
0,158 |
13,430 |
0,0134 |
10,96 | |
ССН |
20 |
0,07 |
12,000 |
0,0072 |
3,24 |
30 |
0,10 |
12,100 |
0,0089 |
3,78 | |
40 |
0,11 |
12,120 |
0,0089 |
3,88 | |
ББН |
20 |
0,08 |
12,120 |
0,0081 |
3,88 |
30 |
0,10 |
12,130 |
0,0113 |
3,94 | |
40 |
0,11 |
12,136 |
0,0113 |
3,97 |
Примечание: nil - предельная величина адсорбции, W0 - предельно адсорбируемый объем, Е - характеристическая энергия адсорбции, Х - полуширина поры для всех исследуемых нитей.
Данные по адсорбции фенола из его разбавленных растворов хорошо согласуются с данными по смачиванию УН, СН и БН смесью мономеров из фенола и формальдегида методом капиллярного поднятия. Для кинетических кривых смачивания характерна высокая скорость поднятия в первые 10-90 секунд от начала эксперимента, с последующим замедлением смачивания до установления равновесия. Отмеченные значения показателей для СН и БН свидетельствуют о близости значений поверхностной энергии этих нитей.
Способность ФФО к формированию сетчатых структур в системе с БН начинает проявляться уже на ранних стадиях реакции – степень отверждения через 35 мин составляет 60 масс.%, в то время как система с СН за этот временной период отверждается лишь на 38 масс.%, и только через 120 мин процесс синтеза для обеих систем выравнивается, достигая степени отверждения 95-96 масс.%. Этими исследованиями установлено, что способность к формированию сетчатых структур композитов на основе БН и УН близка. Видимо, кластерная (негладкая) структура поверхности БН увеличивает их удельную поверхность и ее сорбционную емкость, определяя способность формировать сетчатые структуры.
Изучение оптической микроскопии структуры поверхности образцов УП, БП и СП показало, что они отличаются различной шероховатостью, бугристостью и неровностями рельефа. Возникновение неровностей обусловливается как термическими, так и механическими воздействиями при формовании, а также, в первую очередь, структурной неоднородностью и микрогетерогенностью, связанной с разным сложным многокомпонентным составом БН и СН.
Исследование срезов образцов полученных материалов проводили с помощью растрового электронного (РЭМ) (Hitachi-HU12A) и сканирующего туннельного (СТМ) микроскопов. Из представленных РЭМ изображений среза УП (рис.1,а) заметно равномерное распределение полимерной пленки по поверхности УН и имеет место относительно равномерное распределение нитей в сечении образца материала. На изображении СТМ произвольного участка УП видно, что поверхность УН имеет характерные наноразмерные продольные однонаправленные неровности. Из приведенного РЭМ изображения срезов образца СП заметна большая толщина полимерной пленки на поверхности СН (рис.1,б) с характерными бугристыми заполнениями неровностей в рельефе поверхности нитей в отличие от УП. Учитывая, что пористость СН на порядок меньше пористости УН, большая часть полимера формируется на поверхности нитей и представляет собой объемный слой полимерной матрицы между нитями. Из изображения РЭМ поперечного срезов БП отмечено практическое отсутствие раздавленных нитей, а сформированная на поверхности нитей тонкая полимерная пленка (рис.1,в) имеет четко выраженную ориентацию по ее рельефу.
Таким образом, в отличие от углепластика на стеклонитях и базальтовых нитях формируется более толстая полимерная пленка с бугристыми заполнениями шероховатостей в рельефе поверхности нити и четко выраженной ориентацией по их рельефу.
Глава 4. Структура и свойства ПКМ на основе БН, СН и УН, полученных по интеркаляционной технологии
Анализ полученных экспериментальных данных (табл.2) свидетельствует о том, что физико-химические и механические свойства ПКМ, полученных по ИТ, значительно превышают аналогичные свойства ПКМ, сформованных по традиционной технологии пропиткой нитей ФФС. В целом БП поликонденсационного способа наполнения по всем изучаемым характеристикам превосходят СП. Важным показателем таких материалов является высокая устойчивость к горению: кислородный индекс для БП составляет 60%, СП-50%, УП-70%. При поджигании на воздухе образцы не поддерживают горения. Такие материалы относятся к трудногорючим. Эти свойства привносятся в структуру материала также и фенолформальдегидной матрицей, которая относится к углеродообразующему материалу.
Физико-механические свойства УП, СП и БП, сформированных по ИТ, практически не изменяются после двухчасового кипячения в дистиллированной воде. Это свидетельствует о плотной структуре композитов, сформированных интеркаляцией мономеров в микродефекты и поры нитей, с образованием при последующем отверждении тонких пленок на их поверхности. При этом происходит ориентация по рельефу поверхности пор и нитей.