Фазовые равновесия
3.3 Равновесие пар—жидкий раствор в двухкомпонентных системах
3.3.1 Равновесие пар—жидкий раствор в системах с неограниченной взаимной растворимостью жидкостей
Если раствор образован из двух летучих, неограниченно растворимых друг в друге жидкостей, то пар, находящийся в равновесии с жидким раствором, будет содержать оба компонента. В общем случае состав пара отличается от состава жидкого раствора, из которого он получен. При невысоких давлениях пар можно рассматривать как смесь идеальных газов. Если пар подчиняется законам идеальных газов и находится в равновесии с идеальным раствором, то состав паровой фазы легко найти, зная состав жидкой фазы. Согласно закону Дальтона общее давление пара над идеальным раствором равно сумме парциальных давлений пара компонентов:
(9)
Во всем интервале концентраций идеального жидкого раствора растворитель и растворенное вещество подчиняются закону Рауля:
(10)
Для бинарного раствора, исходя из (9) и (10),
(11)
отсюда после некоторых преобразований имеем
(12)
Из уравнения (12) следует, что только при равенстве давлений пара над чистыми компонентами ) состав пара одинаков с составом жидкого раствора, из которого он получен. Во всех остальных случаях, даже для идеальных растворов, состав пара отличается от состава исходного раствора.
Среди реально существующих растворов имеется много таких систем, для которых уравнение (12) позволяет рассчитать состав пара заданном составе жидкого раствора.
На практике чаще приходится встречаться с неидеальными растворами, которые не подчиняются закону Рауля. В этих случаях состав пара определяется опытным путем. Для изучения равновесия пар— жидкий раствор применяют два типа диаграмм состояния:
диаграммы давление пара — состав (Т — const)
диаграммы температура кипения – состав (Р – const)
На практике для изучения равновесия пар – жидкий раствор, чаще используются диаграммы температура—состав (диаграммы кипения). Реальные растворы со значительным положительным или отрицательным отклонением от идеальности способны образовывать азеотропные смеси (азеотропы), которые на диаграммах состояния. Азеотропные смеси — это растворы, при испарении которых получается пар того же состава, что и исходная жидкая смесь. Азеотропные смеси—условно инвариантные системы (Сусл = 2 — 2 = 0). В реальных растворах азеотропная смесь имеет самую низкую или самую высокую температуру кипения. При изменении внешнего давления изменяется не только температура кипения, но и состав азеотропного раствора. Это указывает на то, что азеотропная смесь не является химическим соединением. Как для идеальных, так и для реальных растворов справедлив первый закон Гиббса—Коновалова: пар по сравнению с жидким раствором, из которого он получен, при равновесии богаче тем компонентом, прибавление которого к раствору приводит к понижению температуры кипения раствора при заданном внешнем давлении или к повышению давления пара над раствором. В системах с азеотропными смесями добавление к раствору более летучего компонента не всегда приводит к повышению давления пара над раствором, т.е. к понижению температуры кипения раствора. Для реальных растворов с азеотропными смесями справедлив также второй закон Гиббса—Коновалова: в азеотропных смесях, составы жидкости и пара совпадают. Азеотропные смеси образуются не только в системах со значительными отклонениями от закона Рауля, но и в системах с незначительными отклонениями, когда компоненты раствора имеют близкие температуры кипения, т.е. почти одинаковые давления пара над чистыми компонентами . В этом случае на диаграмме состояния появляется экстремум, лежащий в средней части диаграммы. Чем больше различие между и , тем больше положение экстремума сдвинуто в сторону одного из компонентов системы: при максимуме на кривой давления пара в сторону более летучего компонента, при минимуме — в сторону менее летучего компонента.
3.3.2 Равновесие пар — жидкий раствор в системах с ограниченной взаимной растворимостью жидкостей
Если система образована из двух летучих ограниченно смешивающихся жидкостей, то при испарении такой системы пар будет содержать оба компонента и находиться в равновесии с каждой из жидких фаз. Согласно правилу сосуществования фаз в гетерогенной системе две фазы, порознь находящиеся в равновесии с третьей фазой, равновесны и между собой. Следовательно, оба жидких раствора равновесны не только с паром, но и между собой. При равновесии химический потенциал каждого из компонентов гетерогенной системы во всех равновесных фазах одинаков:
(13)
(14)
При невысоких давлениях пар можно рассматривать как смесь идеальных газов. Тогда
(15)
Поскольку при заданной температуре , то парциальное давление пара Рi одного и того же компонента над обеими равновесными жидкими фазами одинаково. Так как общее давление пара над раствором равно сумме парциальных давлений компонентов, то при равновесии над обоими жидкими слоями общее давление пара также одинаково. В расслаивающихся равновесных системах с изменением состава системы составы равновесных жидких фаз не изменяются.
Следовательно, при постоянной температуре с изменением состава расслаивающейся системы парциальные давления отдельных компонентов и общее давление пара сохраняются постоянными (правило Коновалова). Характер изменения общего и парциальных давлений пара от состава раствора с ограниченной растворимостью жидкостей показан на рис. ниже. Заштрихованная область на диаграмме соответствует области расслоения при температуре Т. Пунктирными линиями Аb и Ва показан характер изменения парциальных давлений компонентов в системе, подчиняющейся закону Рауля. Кривые аСDВ и АFНb изображают изменения парциальных давлений пара компонентов А и В, кривая аКLb — изменение общего давления пара в зависимости от состава жидких фаз.
рис. зависимость общего и парциальных давлений пара от состава раствора в системах с ограниченной взаимной растворимостью жидкостей при Т=const.