Увеличение степени защиты стали от коррозии в нейтральных и кислых средах
Рефераты >> Химия >> Увеличение степени защиты стали от коррозии в нейтральных и кислых средах

,

где 1000 – количество Дж в 1 кДж; 7200 секунд – время синтеза цикла.

Таблица 4.6 Тепловой баланс.

Приход тепла

Расход

Тепловой поток

10-3

%

Тепловой поток

10-3

%

Qвх

338427,90

26,36

Qвых

713399,06

55,58

QF

951762,49

73,64

Qпот

10152,84

0,79

     

445435,13

34,19

     

Qнагр

121203,34

9,44

Итого

1290190,37

100

Итого

1290190,37

100

5. Структурно-функциональная схема и расчет емкостного аппарата

5.1 Описание структурно-функциональной схемы

Предлагаемая структурно-функциональная схема получения борат метилфосфита включает три стадии.

1) Подготовка сырья.

На данной стадии происходит хранение и дозировка диметилфосфита и борной кислоты с последующей сушкой воздухом при t = 50–60оС.

2) Получение целевого продукта (борат метилфосфита).

Подготовленные компоненты поступают при непрерывном перемешивании в емкостной аппарат, снабженный мешалкой и греющей рубашкой, где происходит их смешение, гомогенизация и нагрев до 120оС. Реакцию ведут при температуре 120оС, в течение 2 часов с непрерывной отгонкой метанола.

3) Стадия выделения и обработки целевого продукта.

Полученную на предыдущей стадии смесь нагревают до 180оС и под вакуумом отгоняют не прореагировавший диметилфосфит.

5.2 Расчет емкостного аппарата, предназначенного для синтеза

Для проведения синтеза борат метилфосфита используется емкостной вертикальный гладкостенный аппарат с эллиптическим днищем, отъемной элиптической крышкой с гладкостенной рубашкой, с открытой турбинной мешалкой и характеризующийся следующими параметрами [3]:

Таблица 5.1 Основные технические параметры реактора

Параметр

Значение

Номинальный объем V, м3

2,5

Поверхность теплообмена F’, м2

4,0

Мощность привода Nэл, кВт

5,5

Частота вращения мешалки, об/мин

195

Диаметр аппарата D, м

1,4

Высота заполнения аппарата Н, м

0,9

Толщина стенки аппарата δ, м

0,002

Диаметр мешалки d, м

0,4

Число мешалок на валу zм

1

Заглубление мешалки hм1, м

0,6

Рабочее давление рраб, МПа

0,1

Коэффициент сопротивления мешалки

8,4

Коэффициент сопротивления лопастей мешалки

3,5

Ввиду того, что в начале процесса, реакционная масса представляет собой суспензию, то соответственно мощность перемешивания дисперсных систем будет отличаться от мощности перемешивания гомогенных жидкостей как из-за изменения плотности и вязкости, так из-за изменения условий обтекания лопастей мешалки. Поэтому целесообразно определить эти параметры:

Объемная доля дисперсной фазы на приходящий поток:

,

где Vф – объемная доля дисперсной фазы, дискретно распределенной в сплошной фазе Vс.

Для всех видов дисперсий их плотность ρ определяется плотностью дисперсной фазы ρф, плотностью сплошной фазы ρс и величиной φ.

Динамическая вязкость дисперсии μ для суспензии для φ < 1, определяется по формуле

Центробежный критерий Рейнольдса

Согласно [35] аппарат работает в переходном режиме с сохранением сплошности.

Параметр высоты заполнения

Параметр гидравлического сопротивления

Параметры распределения скоростей ψ1 = -0,3, ψ2 = -1,25 [3].

Параметр глубины воронки В = 12 [3].

Глубина воронки

Из расчетов видно, что 0,42 < 0,6 – это говорит о том, что условие безопасности выполняется, а принятые характеристики мешалки обеспечивают нормальную работу аппарата.

Значение коэффициента К1, являющийся функцией ψ1 и ψ2, можно принять К1 = 0,019 [3].

Критерий мощности КN

Мощность перемешивания

Мощность привода аппарата составляет 5 кВт, следовательно привод в состояние обеспечивать перемешивание заданного количества реакционной массы.

Выбор турбинной мешалки как перемешивающего устройства обусловлен тем, что она (мешалка) обеспечивает интенсивное перемешивание во всем объеме аппарата, ввиду создания радиальных потоков жидкости. Мощность, потребляемая турбинными мешалками, практически не зависит от вязкости среды [14].


Страница: