Структура волокон поли-бис-трифторэтоксифосфазена
Рефераты >> Химия >> Структура волокон поли-бис-трифторэтоксифосфазена

Интенсивность основного максимума мезофазы более чем на порядок превышает интенсивность экваториальных рефлексов кристаллических модификаций (рис.3). Средний размер упорядоченных областей при переходе в мезофазу увеличивается по меньшей мере в 3 раза. Зависит от температуры для различных структурных форм ПФ (рис.4) свидетельствуют о резкой "перекачке" интенсивности рассеяния в область относительно небольших дифракционных углов (7-12°) при переходе кристаллических модификаций в мезофазу. Этот процесс продолжается при дальнейшем нагревании ПФ в мезоморфном состоянии вплоть до точки изотропизации.

Анализ результатов исследования методами ЯМР и ДСК [13, 14] позволил авторам предположить, что ПФ в состоянии мезофазы двухфазен-аморфная и мезоморфная компоненты находятся в метастабильном равновесии. Однако, на наш взгляд, не исключена и другая возможность: полимер в мезоморфном состоянии представляет собой однофазную систему, но структура его мезофазы такова [9-11], что он проявляет одновременно свойства кристалла (прекрасная межслоевая упорядоченность) и аморфного вещества (плохая внутрислоевая упаковка). В данном случае понятие, аналогичное такой характеристике, как степень кристалличности, для мезофаз подобного типа в традиционном понимании теряет смысл.

Рис.3. Изменение картин рассеяния кристаллических модификаций ПФ при нагревании а: а-фаза, (100) и (010) рефлексы (7 - 293, 2-313, 3-323, 4 - 333,,5 - 338, 6 - 343 К); б: (-фаза, (200), (010) и (НО) рефлексы (1 - 293, 2 - 343, 3 - 348, 4 - 360, 5 - 363, 6 - 365 К)

При переходе в мезофазу происходит спонтанное распрямление цепей. В точке перехода процесс упорядочения на выпрямленных цепях как на зародышах, вовлекает практически весь полимерный материал в структурную перестройку с образованием доменной, однофазной, мезоморфной структуры. Причиной увеличения размеров упорядоченных областей при дальнейшем нагревании является перераспределение границ доменов, образованных статистическими дефектами в результате миграции дефектов. Аналогичные явления наблюдались, в частности, для мезофазы 11ТФЭ [15].

Увеличение площади основного рефлекса мезофазы на кривой рассеяния при нагревании (рис.4) указывает прежде всего на активное совершенствование межслоевой упорядоченности (при сохранении лишь ближнего порядка в пределах слоев), а также на увеличение протяженности действия одномерного дальнего порядка в системе, т.е. на рост размеров доменов. Иными словами, дефектность системы в целом при нагревании от точки перехода в мезоморфное состояние до области, предшествующей изотропизации, понижается.

О том, что система выше точки перехода в мезофазу однофазна, свидетельствует также анализ температурной зависимости размеров областей когерентного рассеяния [11]. При нагревании в первом цикле вплоть до температур, близких к точке изотропизации, поперечный размер упорядоченных областей мезофазы увеличивается, а при охлаждении в пределах ошибки измерения не изменяется. В отличие от ПФ для большинства гибкоцепных полимеров [15] при охлаждении в первом цикле этот параметр продолжает расти, что указывает на существование при максимальной температуре отжига аморфного расплава, упорядочение которого при охлаждении вызывает дополнительное увеличение размеров

Рис.4. Зависимость величины S экваториального рассеяния ПФ от температуры при нагревании а - {1) и f - (2) кристаллических модификаций ПФ.

Рис.5. Зависимость плотности (i) и положений экваториального (2) и меридионального (3) диффузных рефлексов ПФ от температуры кристаллитов.

Тот факт, что для ПФ подобный эффект не наблюдается, свидетельствует об отсутствии в данном полимере изотропной фазы. Сосуществование мезофазы и изотропного расплава, на наш взгляд, возможно лишь в температурной области, непосредственно предшествующей изотропизации ПФ.

Кристаллизация мезофазы при охлаждении протекает по механизму случайного зародышеобразования, что приводит к распаду крупных областей упорядочения на относительно мелкие кристаллиты с поперечными размерами порядка 25 им. При этом разориентация образующихся кристаллитов может соответствовать степени орпептационного разброса сегментов конформационно разупорядоченных цепей в мезофазе, что и наблюдается в действительности.

Характерно также, что доля изотропной поликристаллической компоненты после термообработки заметно снизилась (рис.1,6). Теперь уже около 90% кристаллитов ПФ преимущественно ориентированы осмо "с" вдоль направления растяжения, хотя, как отмечалось ранее, их ориентация ниже, чем в исходном образце.

Конечное состояние образца после охлаждения определяется максимальной температурой отжига в цикле. На рис.2 показаны изменения экваториальных и меридиональных дифрактограмм после отжига при различных температурах. На экваториальных дифрактограммах с увеличением температуры отжига происходит некоторое перераспределение интенсивности рефлексов (при общем сохранении числа рефлексов, отвечающих γ-решетке), свидетельствующее о совершенствовании структуры кристаллов ПФ. Особенно отчетливо влияние обжига сказывается па картинах меридионального рассеяния, где начиная с 433 К разрешается рефлекс (001). Оценка продольных размеров кристаллитов по полуширине указанного максимума дает минимальное значение величины ~70 им. Это прямое подтверждение наличия кристаллов с выпрямленными цепями в подобной системе.

Естественно попытаться оценить большой период ПФ в различных температурных областях. Однако, как оказалось, рассеяние в малых-углах носит диффузный характер. Дискретный максимум в малых углах па дифракционной картине всех трех структурных форм ПФ отсутствует, что согласуется с результатами работы [16]. По-видимому, значение большого периода в данной системе лежит за пределом разрешения используемой! аппаратуры.

Образцы 5-8 различаются температурами, при которых была проведена дополнительная термовытяжка с целью максимального увеличения степени ориентации волокон. Фоторентгенограммы этих образцов качественно идентичны (типичный снимок приведен на рис.1, в). При этом, однако, доля ориентированного материала оказывается существенно разной: лишь половина кристаллитов ПФ преимущественно ориентирована вдоль оси растяжения в первом случае и около 100% - во втором.

Анализ рентгеновских данных показывает, что рассеяние от аморфной компоненты на фоторентгенограммах высокоориентированных образцов после кристаллизации из мезоморфного состояния выявить не удается. Доля ориентированного полимера, степень ориентации и степень кристалличности максимальны для образца 8.

Картину рассеяния ПФ условно можно разделить на две основные области (рис.2). Диапазон дифракционных углов 7-10° соответствует интерференции на макромолекулярных остовах, интервал 15-25° отвечает главным образом внутримолекулярной периодичности, а также рассеянию на боковых группах. В качестве иллюстрации для температурной области существования мезофазы на рис.5 представлены зависимости положений диффузных максимумов широкоугловой дифракционной области (15-25°) на экваторе и меридиане рентгенограммы. Различие положений диффузного максимума в этих двух случаях, возможно, свидетельствует о перекрывании бокового обрамления соседних макромолекул. Здесь же приведены величины плотности, рассчитанные по кристаллографическим данным, для температурных областей существования мезофазы и изотропного расплава. Точка изотропизации характеризуется скачком на каждой из трех зависимостей рис.5.


Страница: