Сравнительный анализ рециркуляционных схем на примере реакции изомеризации
Вторая группа методов исследования рециркуляционных систем - это упрошенные качественные методы [23, 77]. Для упрощения анализа вводят различные допущения при описании реакционной и разделительной составляющих процесса. При описании реакционного блока могут использоваться упрошенные механизмы реакции или допущение о бесконечном объеме реактора, которое позволяет считать, что состав на выходе из него всегда химически равновесный [34] и т.д. При анализе разделительных процессов также можно вводить предельные допущения. В частности, можно исследовать процесс ректификации при бесконечной высоте колонны и режиме полного орошения. Тогда, в соответствии с положениями термодинамико-топологического анализа [2] для определения возможных составов продуктовых потоков разделения можно использовать фазовый портрет равновесного открытого испарения реакционной смеси. При таком "запределивании" параметров разделения исследование рециркуляционной системы можно свести к решению системы уравнений материальных балансов реактора, узла смешения и колонны, в которой реализуются четкие и получеткие разделения. Такой способ упрощения довольно широко используется различными авторами [32, 41, 49] и дает хорошие результаты. Однако остается открытым вопрос о сохранении полученных результатов анализа при переходе к реальным процессам.
Еще один метод упрощения анализа рециркуляционных систем состоит в линеаризации [68.69] структурных элементов диаграмм фазового и химического равновесия, т.е. аппроксимации разделяющих многообразий парожидкостного равновесия, бинодальных многообразий и многообразий химического равновесия. Например, в работе [68] линия химического равновесия представляется в виде ломаной, каждый участок которой описывается своим уравнением прямой. Поскольку при допущениях о бесконечной высоте колонны и полном орошении для ректификационной колонны и равновесном реакторе записываются только линейные уравнения материальных балансов (тепло не учитывается), то математическая модель превращается в систему линейных уравнений, которую можно решить любым из известных методов.
Системы нелинейных дифференциальных уравнений (динамические системы) также можно линеаризовать путем разложения их в ряд Тейлора в окрестностях особых точек [28.29.37]. По набору характеристических корней матрицы Якоби линеаризованной системы можно определить характер поведения фазовых траектории динамических систем процесса в окрестности особой точки, т.е. качественным образом отслеживать поведение процесса. Методы, качественной теории дифференциальных уравнений были применены авторами работ [30-32] для исследования процессов ректификации, а также различных реакционных процессов [77.78, 80].
1.2. Методы оценки энергетических затрат в реакционно-ректификационных процессах.
Ранее в работах [1.2] было показано, что в технологических схемах содержащих ректификацию около 80% всех энергетических затрат приходится именно на этот процесс. Поэтому затраты энергии в реакционно-ректификационных процессах можно оценивать по энергозатратам на ректификацию. Эти затраты в основном связаны с формированием потока пара и для их оценки используют значение минимального флегмового числа, необходимого для получения продуктов заданного качества. Режим минимального орошения реализуется в колонне бесконечной высоты, и при этом в колонне имеются зоны постоянных концентраций [2, 3]. Существуют различные методы оценки минимального флегмового числа как численные, так и аналитические. Численные методы [24.97-104] позволяют определять минимальное флегмовое число для смесей с любым фазовым равновесием и не требуют допущения о постоянстве потоков жидкости и пара по высоте колонны. В их основе лежат уравнения материальных и тепловых балансов для зон постоянных концентраций укрепляющей и исчерпывающей секций ректификационной колонны и различные методики сходимости [25-27.99]. Поскольку численные методы являются итерационными, бывают случаи, когда расчет не сходится. Аналитические же методы позволяют оценить значение минимального флегмового числа непосредственно, однако требуют принятия различных допущений. Наиболее распространенным из таких является метод Андервуда [105-107], в основе которого лежит уравнение, связывающее составы продуктовых потоков со значением минимального флегмового числа при допущениях о постоянных относительных летучестях компонентов разделяемой смеси и постоянстве мольных потоков жидкости и пара по высоте колонны.
1.3. Постановка задачи.
В связи с тем, что в литературе очень мало рассмотрены случаи рециркуляционных реакционно-ректификационных систем с двумя реакторами и, следовательно, варианты организации рециркулирующего потока в таких системах, целью работы является оценка минимальных энергетических затрат в рециркуляционных реакционно-ректификационных процессах с различной организацией подачи рецикла для реакции изомеризации типа АВ.
Глава 2. Расчетно-аналитическая часть
2.1. Анализ стационарных состояний рециркуляционного реакционно-ректификационного процесса.
В рециркуляционных схемах существуют различные варианты подачи рецикла. В данном случае рассматривается схема, состоящая из двух реакторов и ректификационной колонны. Очевидно, что рецикл может охватывать либо один реактор, либо оба.
Следовательно, нужно рассмотреть оба варианта для выявления наиболее выгодного.
Для успешного поведения анализа необходимо выбрать систему допущений, которая позволяла бы получать с одной стороны содержательные, а с другой стороны – максимально упрощенные модели процессов рециркуляционной реакционно-ректификационной системы.
В связи с этим для описания ректификационного блока разделения будем использовать модели ректификационных колонн, обладающих бесконечной высотой и работающих в режиме бесконечного орошения. Что дает возможность использовать понятия четких и получетких разделений, что предполагает наличие в кубе и дистилляте чистых компонентов. Для описания реакционного узла будет использоваться модель реактора идеального смешения, гидродинамическая модель которого является простейшей. Главным параметром такого реактора является его объем.
Кроме того, будем считать, что рассматриваемые реакции являются каталитическими (протекают только в зоне расположения катализатора) их скорости подчиняются закону действующих масс. Константы скорости прямой и обратной реакции зафиксированы на некоторых постоянных значениях и не зависят от условий проведения процесса.
Проведем анализ систем с различным охватом рецикла.
2.1. Рециркуляционная схема с рециклом, охватывающим два реактора.
Рассмотрим рециркуляционную систему (рис.2.1), состоящую из двух реакторов идеального смешения и ректификационной колонны, охваченных обратным рециркулирующим потоком по дистилляту.
R Xr
V1 V2
F G L L
Xf Xg Xl1 Xl2