Спирты
легко воспламеняются синеватым почти не светящимся пламенем , и
после сгорания их остаётся чёрный налёт .
Взаимодействие этилого спирта с натрием .
2С2Н5ОН+2Na –2C2Н5Оna+H2
Продукт замещения водорода в э.с. называется этилатом натрия , он может быть выделен после реакции в твёрдом виде. Также реагируют
со щелочными металлами другие растворимые спирты образуя
соответствующие алкоголиенты .
Однако спирты к классу кислот не относятся , так как степень дисоциации их крайне незначительна , даже меньше чем у воды , их
растворы неизменяют окраску индикаторов .
Положение степени дисоциации спиртов по сравнению с водой можно
обьяснить влиянием углеводородного радикала : смещение радикалом
электронной плотности связи . 6 –0 в сторону атома кислород ведёт
к увиличению на последнем частичного отрицательного заряда вседствии чего он прочнее удерживает атом водорода .
Можно повысить стпень , если в молекулу ввести заместитель
притягивающий к себе электроны химической связи . Так , степнь
дисоциации если 2 –хлорэтанола ClCu2 –CH2OH возрастает в несколько
раз по сравнению с этанолом (этиловым спиртом) .
У спиртов может вступать не только гидроксильный атом водорода ,
но и вся гидроксильная группа . Если в колбе с присоеденённым к ней холодильником нагревать этиловый спирт с галогеноводородной
кислотой , например с бромоводородной (для образования бромоводорода берут смесь бромида калия или бромида натрия с
серной кислотой) , то через некоторое время можно заметить , что в
пробирке под слоем воды собирается тяжёлая жидкость–броэтан .
С2Н5ОН+НBr–С2Н5Br+H2O
Эта реакция тоже идёт с ионым расщиплением ковалентной связи С-О
Она напоминает нам реакцию оснований и этилового спирта , образуется бромистан .
При нагревании с концентрированной кислотой в качестве католизатора
спирты легко дигидратируются , т.е. отщепляет воду . Из этилового
спирта при этом образуется этилен .
Н Н
Н –С –С –Н –СН2=СН2+Н2О
Н ОН
Дигидрация последующих ломологов приводит к получению других
непредельных углеводородов .
Н Н Н
Н –С –С –С –Н СН3 –СН =СН2+Н2О
Н Н ОН
При несколько иных условиях дигидрация спиртов может , происходить с отщиплением молекулы воды не от каждой молекулы
спирта , а от двух молекул . Так , при более слабом нагревания этилового спирта с серной кислотой (не выше +140 С и при избытке
спирта) диэтиловый эфир .
С2Н5ОН+ОНС2Н5 –С2Н5 –О –С 2Н5+Н2О
Диэтиловый эфир –летучая , легко воспламеняющаяся жидкость , применяют в медицине в качестве наркоза . Он относится к классу простых эфиров–органических веществ , молекулы которых состоят из
двух углеводородных радикалов , соединёных посредственно атома
кислорода .
С диэтиловым эфиром мы встречались когда выяснили строение этилового спирта . Из двух возможных структур отвечающих формуле
С2Н6О , мы выбрали одну позволяющую понять свойства спирта . Другая не принетая нами формула хотя она также отвечает правилом
важности , выражает стрение диментилового эфира . Имея одну и эту же молекулярную формулу , эти вещества , следовательно , являются изомерами , принадлежат к различным классам органических соединений .
Физические свойства.
Вы , несомненно обратили внимание , что , в отличие от ранее рассматривавшихся предельных и непредельных углеводородов , в данном гамологическом ряду ней газообразных веществ , уже первый член ряда –метиловый спирт –жидкость. Как обьяснить такое повышение
температуры кипения веществ . Может тем , что при вступлении атома
кислорода в молекулу сильно возрастёт молекулярная масса вещества
Но у метилового спирта молекулярная масса –32 , у пропана –44 , однако и он представляет собой газообразное вещество . Тогда что же
удерживает молекулы метилового спирта , сами по себе довольно лёгкие , в жидком состоянии ?
В молекулах спирта , как мы выяснили , углеводородный радикал и атом кислорода не на одной прямой , а под некоторым углом друг к другу . У атома О2 имеются ещё свободные электронные пары . Поэтому он может взаимодействовать с атомом водорода другой молекуы , имеющий некоторый положительный заряд в результате
смещения электронов к атому кислороду (рис.3 а) . Так между атомами возникает водородная связь , которая обозначается в формулах
точками :
Прочность водородной связи значительно меньше обычной ковалентной связи (примерно в десять раз) . За счёт водородных связей молекулы спирта оказываются ассоциированными , как бы прилипли друг к другу . Поэтому на разрыв этих связей необходимо затратить дополнительную энергию , чтобы молекулы стали свободными и вещество преобрело летучесть . Это и является причиной более высокой температуры кипения всех спиртов по сравнению с соответствующими углеводородами . Теперь можно понять почему вода при такой небольшой молекулярной массе имеет необычно высокую температу кипения (рис.35) .
Водородные связи могут установливаться и между молекулами спирта
и воды (рис.31в) . Именно этим обьясняется растворимость спиртов в отличие от углеводородов , которые из-за малой полярности связей
С–Н не образуют с водой водородных связей и поэтому не растворяется в ней . норастворимость спиртов в воде (вспомним , что члены гамологических рядов при сходстве свойств имеют индивидуальные различия) . Если в равные обьёмом воды в стаканчиках
мы прильём по одинаковому обьёму (например 5мл.) , метилового ,
пропилового, этилового, бутилового и аминового спиртов и перемешаем
жидкости , то заметим , что первые три спирта расворяются полностью
а бутиловый и особенно аминовый спирты в меньшей степени . Понижение растворимости можно обьяснить тем , что , чем больше углеводородный радикал в молекуле спирта , тем труднее гидроксильной группе удержать такую молекулу в растворе за счёт образования водородных связей (углеводороды в воде не растворимы)
Применение и получение спиртов .
Получение .
До начала 30-х годов 20 века его получали исключительно сбраживанием пищ углеводсодержащего сырья , и при обработки зерна
(рожь , ячмень , кукуруза , овёс , просо) . В 30-е по 50-е годы было разработанно несколько способов синтеза Э.С. из химического сырья
например : лидрирования ацентальдецида и д.р. . Оси современных способов –односейадистная (прямая) гидраитация . Этилена
(CU2=CU2+H2O –C2H5OH) , осуществляется на фосфорно-кислотном
католизаторе при 280-300 С и 7,2-8,3 Мн/м (72-83 кг/см ). Так , в США
в 1976 г. было выработано около 800 тыс. тонн этонола , в т.ч. 550 тыс. тонн прямой гидротацией (остальное сбраживание пищевого сырья) . В других странах (СССР , Франция и др.) Э.С. получают также двухстадийной (сернокислотной гидраитацией этилена при :
75-80 С и 2,48 Мн/м/24,8 нес/м ) этилен взаимодействует с
концетрированой серной кислотой с образованием смеси моно и
диэнтилеульфатов [С2Н5OSO2ОН и (С2Н5О)2SO2] , которые затем
гидрилизуясь при 100 С и 0,3-0,4 Мн/м дают Э.С. и Н2SO4 .