Создание и исследование шпаклевочных паст на основе УПС и АВС
Из-за высокой вязкости инверсия затруднена и протекает до конца только при интенсивном перемешивании. Размер и форма частиц каучуковой фазы зависят от геометрии сосуда и мешалки, скорости сдвига, концентрации и молекулярной массы каучука, молекулярной массы полистирола, количества образовавшегося сополимера. При инверсии образующаяся дискретная фаза захватывает (окклюдирует) некоторое количество полистирола. При степени превращения стирола 30—40% двухфазная система становится устойчивой, и размер дискретных частиц перестает зависеть от условий перемешивания. Таким образом, структура ударопрочного полистирола формируется на стадии инверсии фаз.
В конце процесса, когда содержание стирола значительно уменьшается, происходит частичное сшивание дискретной фазы, приобретающей структуру сшитого микрогеля. На этой стадии продукт представляет собой расплав ударопрочного полистирола, содержащего небольшое количество непрореагировавшего стирола (0,5—10%).
В технике процесс осуществляют по непрерывной схеме аналогично полимеризации стирола. Часто для более плавной регулировки температурного режима (на завершающей стадии) сополимеризацию ведут в присутствии растворителя — толуола, этилбензола (10—30% от массы реакционной среды). Режим процесса рассчитывают таким образом, чтобы инверсия фаз полностью протекала в одном аппарате при контролируемых условиях перемешивания. На последующих стадиях важно, чтобы структура дискретной фазы не разрушилась из-за слишком высоких скоростей сдвига или высокой температуры. Непрореагировавший стирол и растворитель удаляют в вакуум-камере или вакуум-шнек машине. Продукт гранулируют.
Блочно-суспензионный процесс проводят по периодической схеме в двух аппаратах, снабженных мешалками и рубашками. В первом растворяют каучук в стироле и ведут полимеризацию в массе до степени превращения стирола 30—40%, как описано выше. За это время полностью заканчивается инверсия фаз, и частицы дискретной фазы уплотняются и приобретают устойчивость к коалесценции (слипанию); реакционную систему можно не перемешивать. Под давлением инертного газа ее передавливают во второй аппарат, содержащий деминерализованную воду и стабилизаторы суспензии, и вводят дополнительное количество инициатора. Реакционную массу суспендируют в воде при интенсивном перемешивании, и процесс ведут при 95 — 120оС под давлением до достижения предельной степени прекращения стирола. Ударопрочный полистирол, содержащий 0,1% С., отделяют от воды и обрабатывают как продукт суспензионной полимеризации.
Поскольку стоимость каучука примерно в 3—4 раза выше, чем полистирол, а увеличение содержания каучука приводит к снижению прочности при растяжении, модуля упругости и атмосферостойкости композиционного материала, целесообразно добиваться наибольшего эффекта упрочнения при минимальном содержании каучука.
Прививка стирола на эти эластомеры протекает значительно труднее. Применяют специальные методы — химнческую модификацию эластомера, добавляют сшивающие агенты. Все же эти продукты обладают сравнительно более низкой ударной прочностью, чем сополимеры на основе каучука. Прозрачный гетерогенный материал можно получить, уменьшая размер частиц дискретной фазы до значения, меньшего длины волны падающего света, или подбирая состав фаз таким образом, чтобы показатели преломления их совпали. Первый путь не пригоден при получении ударопрочного полистирола. Каучук имеет показатель преломления 1,52. Для понижения показателя преломления матрицы часть стирола заменяют метилметакрилатом (соотношение 30 : 70). Таким образом удается получить ударопрочный сополимер с прозрачностью 70—75% . Сополимеризацию проводят по непрерывной схеме в растворе ароматического углеводорода (например, в толуоле) или по периодической схеме блочно-суспензионным методом.
2.2. Ненасыщенные полиэфиры.
Хотя первые ненасыщенные полиэфиры фумаровой и малеиновой кислот были получены около девяносто лет тому назад, впервые производство этих полимеров было начато в начале сороковых годов. Важным этапом, способствующим широкому практическому применению полималеинатов и полифумаратов, явилось открытие способности этих полимеров сополимеризоваться с виниловыми мономерами с получением ценных конструкционных материалов.
В сороковые годы появились сообщения о производстве полимеров полимеризацией и сополимеризацией диаллилфталата к других аллиловых сложных эфиров. С 1947—1948 гг. в Советском Союзе техническое значение приобрели полиэфиракрилаты — полимеры, синтезируемые полимеризацией олигомерных эфиров с концевыми акрильными, метакрильными и другими ненасыщенными группами.
2.2.1. Полималеинаты и полифумараты
Наибольшее применение нашли ненасыщенные полиэфиры, получаемые доликонденсацией ненасыщенных дикарбоновых кислот, чаще всего малеиновой и фумаровой с многоатомными спиртами.
Обычно эти ненасыщенные полиэфиры используют в виде их 60—75%-ных растворов в различных мономерах, при сополиме-рязации с которыми они образуют неплавкие и нерастворимые полимеры пространственного строения. Такие растворы ненасыщенных полиэфиров в непредельных мономерах называют ненасыщенными полиэфирными смолами. Использование ненасыщенных полиэфиров в виде их растворов обеспечивает, во-первых, более полное отверждение ненасыщенного полиэфира, а, во-вторых, понижает вязкость ненасыщенных полиэфиров, облегчая их применение в качестве связующего для армированных материалов.
Ненасыщенные полиэфирные смолы отличаются от многих других термореактив пых полимеров тем, что они способны отверждаться при комнатной или сравнительно невысокой температуре без выделения каких-либо побочных продуктов. Это позволяет изготавливать из них изделия (в частности, армированные пластики) при низких давлениях, что имеет большое значение как с экономической, так и с технологической точек зрения. Ненасыщенные полиэфирные смолы получают в две стадия1. Вначале осуществляют поликонденсацию малеиновой или фу-маровой кислот или их смеси с модифицирующей насыщенной дикарбоновой кислотой с каким-либо гликолем (этиленглико-лем, диэтиленгликолем, пропиленгликолем, триэтиленгликолем, бутиленгликолем или их смесями). Реакцию проводят в расплаве исходных компонентов при 170—230 °С в инертной среде или при более низких температурах (160—195 °С) в присутствии растворителей, образующих азеотропные смеси (например, ксилол) с выделяющейся в процессе реакции водой:
Следует учитывать, что при поликонденсации, в зависимости от условий проведения процесса происходит в большей или меньшей степени изомеризация цис-изомерных малеинатных звеньев в более устойчивые транс-изомерные фумаратные звенья, содержание которых в конечном продукте определяет многие его свойства (твердость, теплостойкость н др.). Посуществу, при использовании в поликонденсации в качестве кислотного агента малеиновой кислоты получаются полиэфиры, представляющие собой разнозвенные полимеры, которые являются сополимерами малеиновой и фумаровой кислот. Степень превращения зависит как от природы гликоля, так и от условий поликонденсации и может достигать 70—90%.