Современные направления развития композитов на основе полимеров
Отсюда следует простой вывод: для разрушения ПКМ под нагрузкой требуется преодолеть не только суммарную прочность армирующих волокон, но и силы, препятствующие поперечному сжатию. Нетрудно догадаться, что эти силы тем больше, чем лучше адгезия связующего к поверхности наполнителя и чем выше упругие свойства полимерной среды. Вероятно, полимерная матрица, обладающая значительной прочностью в объеме, еще более упрочняется в тонких слоях.
Сторонники «химического» подхода к усилению полимеров львиную долю упрочняющего эффекта в ПКМ приписывают склеиванию частиц наполнителя с полимером. Правда, экспериментальные данные, подтверждающие эту точку зрения, были получены не на пластиках, а на эластомерах, точнее, на бутадиеновом каучуке СКВ.
Напомним, что разница между пластиком и эластомером кроется в природе состояния полимера при температурах его эксплуатации. Если полимер в рабочем диапазоне температур находится в стеклообразном или кристаллическом состоянии, то он — пластик, если в высокоэластическом состоянии, то он — эластомер (каучук). В основном ПКМ изготавливают из полимеров-пластиков. Но, как утверждают исследователи, многие представления об усилении полимеров одинаково справедливы как для каучуков, так и для пластиков.
Каучуки, на примере которых исследована роль склеивания в усилении, наполняли порошкообразными стеклом, мелом и печной сажей. Были измерены и сопоставлены между собой параметры, характеризующие адгезию этих наполнителей к каучуку СКВ (сопротивление расслаиванию материала), и коэффициенты усиления композитов СКВ — наполнитель. Сходная природа явлений слоения и адгезии подтверждена тем, что с увеличением сопротивления расслаиванию возрастает и коэффициент усиления.
Кроме того, известно, что прочность склеивания с уменьшением толщины слоя полимерного связующего сначала возрастает, а затем падает. Так вот, аналогичную картину ученые наблюдали и в случае усиления. Действительно, при увеличении содержания наполнителя каучуке, приводящем к снижению толщины полимерной прослойки между частицами наполнителя, прочность материала до определенного предела повышалась, а затем снижалась.
Перечень подобных доказательств можно было бы продолжить. Скажем лишь, что все они подтверждают корреляцию между адгезией и усилением полимеров.
Одна из популярных теорий, объясняющих усиление эластомеров мелкодисперсными наполнителями, предполагает образование в наполненном полимере цепочек из частиц наполнителя. «Адгезионный» подход к явлению усиления, учитывающий определяющую роль склеивания истиц наполнителя с помощью полимера, служит прекрасным объяснением упрочняющего действия таких цепочек.
В самом деле, создание точечного контакта между соседними частицами совсем не исключает склеивания этих частиц в зазоре вокруг контакта. Сделан вывод, то в наполненных каучуках одна и та же макромолекула связующего может переходить от поверхности одной частицы наполнителя к поверхности другой не один, как предполагалось ранее, а много раз.
Коэффициент усиления — отношение прочности наполненного материала к прочности исходного полимера. В настоящее время ПКМ, армированные Полимерными волокнами, получили достаточно широкое распространение в различных областях техники. Тем не менее, количество работ, посвященных детальному исследованию взаимодействия наполнитель—связующее в этих системах, очень мало в сравнении е аналогичными исследованиями по стеклопластикам. Поэтому создание теории такого взаимодействия и выяснение путей, позволяющих регулировать свойства полимер-полимерных композитов в заданном па-правлении,— дело будущего.
Литература
1Армированные полимерные материалы / Под ред. 3. А. Роговина. М.: Мир, 1968. 244 с.
2Воробьев В. А. Технология строительных материалов и изделий на основе пластмасс. М.: Высш. шк., 1974. 472 с.
3Конкин Л. А. Углеродные и другие жаростойкие волокнистые материалы. М.: Химия, 1974. 375 с.
4Композиционные полимерные материалы / Под ред. Ю. С. Липатова. Киев: Наук, думка, 1975. 190 с.
5Липатов Ю. С. Физическая химия наполненных полимеров. М.: Химия, 1977. 304 с,
6Журнал ВХО им. Д. И. Менделеева, 1978, т. 23, № 3 (номер посвящен полимерным композиционным материалам).
7Конструкционные стеклопластики/В. И. Альперин, Н. В. Корольков, А. В. Мотавкип и др. М.: Химия, 1979. 360 с.
8Мэнсон Дж., Сперлинг Л. Полимерные смеси и композиты. М.: Химия, 1979. 440 с.
9Промышленные полимерные композиционные материалы / Под ред. П. Г. Бабаевского. М.: Химия, 1980. 472 с.
10Химия и технология высокомолекулярных соединений / Под ред. А. А. Аскадского. М.: ВИНИТИ, 1981. 204 с. (Итоги науки и техники; Т. 14).
11Волъфсон С. А. Композиционные полимерные материалы сегодня и завтра: Комплексная научно-техническая целевая программа. М.: Знание, 1982. 64 с.