Современная трактовка таблицы Менделеева
Рефераты >> Химия >> Современная трактовка таблицы Менделеева

Существует своего рода «нейтронный водораздел» ("neutron drip line"), лимитирующий количество нейтронов, способных быть стабильно связанными в составе томного ядра. Ядра легких элементов, богатые нейтронами, отличаются малыми временами жизни, однако играют существенную роль в процессах нуклеосинтеза, протекающих при термоядерном «горении» звезд. Изучение свойств таких ядер может позволить приблизиться к пониманию общей картины строения атомного ядра.

Исследователи из Лаборатории National Superconducting Cyclotron Laboratory (NSCL) Университета штата Мичиган отдалили нейтронный водораздел магния и алюминия, добавив к известным ранее изотопам этих элементов два новых, чрезвычайно богатых нейтронами: 40Mg и 42Al.

Исследователи из NSCL под руководством Томаса Бауманна (Thomas Baumann) обстреливали лучом из ускоренных атомов 48Ca вольфрамовую мишень. При попадании атомов кальция-48 в вольфрамовую мишень 48Ca фрагментируется, теряя протоны и нейтроны, образуя при этом различные изотопы, в том числе и два впервые обнаруженных. Далее продукты столкновения разделялись с помощью магнитного поля и идентифицировались с помощью метода масс-спектрометрии.

Существование относительно стабильного изотопа 40Mg ранее было предсказано, в то время как факт детектирования 42Al оказался сюрпризом. Дело в том, что заполнение оболочек ядра атома напоминает заполнение орбиталей электронами – ядро, содержащее четное количество спаренных протонов и нейтронов стабильнее аналогов с нечетным числом нуклонов. У изотопа 42Al в ядре содержится 29 нейтронов, вследствие чего физики-ядерщики предполагали, что изотоп с неспаренным нейтроном не может находиться даже поблизости с границей нейтронного водораздела, характерного для алюминия.

2.2 Современная форма таблицы Менделеева

Доктор технических наук Р. Сайфуллин, кандидат химических наук А. Сайфуллин

В этом году исполняется 170 лет со дня рождения выдающегося российского химика Дмитрия Ивановича Менделеева и 135 лет со дня создания им периодической системы элементов. За истекшее время таблица, наглядно демонстрирующая периодический закон, неоднократно дополнялась и расширялась. До последнего времени в научной и учебной литературе приводилась так называемая короткая форма таблицы.

Современный, расширенный вариант таблицы Менделеева составлен авторами статьи на основании последних решений ИЮПАК — Международного союза теоретической и прикладной химии (International Union of Pure and Applied Chemistry — IUPAC). Эта организация, созданная в 1919 году, кооpдиниpует исследования, требующие международного согласования, контроля и стандартизации, рекомендует и утверждает химическую терминологию, включая названия элементов. Россия, будучи полноправным членом союза, выполняет его решения и рекомендации. Новая форма таблицы была одобрена XVII Менделеевским съездом в сентябре 2003 года. В таблицу внесены самые последние характеристики всех известных на сегодняшний день элементов. Она будет полезна всем, кто изучает химию и физику или просто интересуется современной наукой.

Из истории создания и развития периодической системы Первого марта 1869 года Д.И. Менделеев обнародовал периодический закон и его следствие — таблицу элементов. В 1870 году он назвал систему „естественной“, а спустя год — „периодической“. Таблица (далёкий прообраз современной), демонстрирующая закон, была представлена Менделеевым под названием „Опыт системы элементов, основанный на их же атомном весе и химическом сходстве“. Им же была дана формулировка закона: „Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, находятся в периодической зависимости от их же атомного веса“. Таблица состояла из шести вертикальных групп, предшественниц будущих периодов. По горизонтали прослеживались ещё не полные ряды элементов, прообразов будущих подгрупп (сегодня — групп) элементов. Она содержала 67 элементов (сейчас их около 120), в том числе три предсказанных, впоследствии открытых и названных „укрепителями периодического закона“.

Естественно, первая таблица была несовершенной, и в последующие годы Менделеев многократно дополнял её и вносил в её структуру изменения. В момент представления первого варианта таблицы (март 1869 года) не были ещё известны благородные („инертные“) газы (Не, Ne, Ar, Kr, Xe, Rn) и отсутствовали сведения о внутреннем строении атомов.

Лишь в двадцатых годах прошлого столетия, после революционных открытий в физике, применения рентгеновских лучей и обнаружения благородных газов, стало возможным дать современное определение закона о периодической зависимости свойств элементов от порядкового номера элемента, а не от атомного веса, как было вначале отмечено Д. Менделеевым. Иными словами, в трактовке закона понятие „атомный вес“ элемента было заменено словами „порядковый (или атомный) номер“, что отвечает числу протонов в ядре атома и, соответственно, числу электронов у нейтрального атома. Определение стало отвечать данным об электронном строении атома, диктующим периодическую повторяемость свойств атомов через 2 (s-элементы), 6 (р-элементы), 10 (d-элементы) и 14 (f-элементы) элементов. Эти цифры отвечают максимально возможному числу электронов на определённом энергетическом уровне атома. Они же соответствуют и числу возможных элементов в соответствующем периоде. На первом энергетическом уровне дозволено быть только двум электронам (на s-уровне). Они привели к наличию в первом периоде двух элементов: водорода и гелия. На втором энергетическом уровне восемь разных электронов отвечают появлению восьми новых элементов — от лития до неона.

Аналогичная картина наблюдается и в третьем периоде. В нём, вместо ожидаемых восемнадцати, также восемь элементов — от натрия до аргона. Здесь произошла задержка с образованием десяти d-элементов из-за того, что 3d-электроны оказались на более высоком энергетическом уровне, чем 4s-электроны. По этой причине 3d-элементы (скандий, титан и др.) появляются лишь в четвёртом периоде после двух 4s-элементов (калий и кальций). Они предшествуют 4р-элементам (от галлия до криптона). Этим объясняется возникновение обобщающего термина — „переходные элементы“, „вставная декада“. В пятом периоде наблюдается аналогичная картина, в него с опозданием приходят 4d-элементы; они также оказываются переходными. Описанные естественные явления были одной из причин создания таблицы из восьми групп. Однако „запаздывают“ также по четырнадцать 4f- и 5f-элементов уже на два периода. Из-за их большего числа и расположения этих электронов в третьем снаружи слое (близость свойств) в обеих обсуждаемых здесь формах таблиц они выделены вне групп. Общее правило при образовании периодов системы — все они начинаются со щелочных металлов с первым ns1-электроном, образующим n-период (n — номер периода системы). Завершает каждый период „инертный“ газ с последним np6-электроном. Исключение — первый период системы, он находится всегда на особом положении.

Таким образом, число элементов в семи известных периодах составляет 2, 8, 8, 18, 18, 32, 32. В соответствии с указанными числами будут наполняться элементами все периоды в порядке возрастания их порядковых номеров. При этом один и тот же элемент может оказаться в различных по номеру группах, что заметно при сравнении двух таблиц. Рассмотренные цифры позволяют создать таблицы, состоящие из 2, 8, 18 или 32 групп элементов в трёх вариантах — из (2+6), (2+6+10) или (2+6+10+14) групп. Исторически, как наиболее удобные, распространение получили в первую очередь таблицы, состоящие из 8 или 18 вертикальных групп:


Страница: