Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов
Рефераты >> Химия >> Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов

В SN2-реакциях реакционная способность уменьшается в ряду:

СН3–Х > RСН2–Х > R1R2СН–Х > R1R2R3С–Х

2.1.2. Мономолекулярное нуклеофильное замещение

Третичные алкилгалогениды реагируют по механизму SN1 (мономолекулярное нуклеофильное замещение).

Cтадии процесса. Реакция протекает в две стадии. Первая стадия - гетеролитический разрыв связи углерод-галоген - медленная.

Вторая стадия - образовавшийся карбокатион практически мгновенно взаимодействует с нуклеофилом – молекулой воды.

В отличие от механизма SN2 разрыв связи С-Х и образование новой связи С-Nu протекает не одновременно, а последовательно.

Энергетическая диаграмма реакции изображает изменение потенциальной энергии в ходе двух стадийного мономолекулярного замещения.

Рис.2.4. График изменения потенциальной энергии в ходе мономолекулярного нуклеофильного замещения. SN1-двухстадийный последовательный процесс.

Скорость реакции. В медленной стадии, определяющей скорость реакции, принимает участие только одна молекула, поэтому механизм называют мономолекулярным замещением. Скорость реакции зависит от концентрации галогеналкана и определяется по формуле V = K[R-Hal].

Концентрация нуклеофильного реагента. Низкая концентрация нуклеофила способствует SN1-реакции.

Перегруппировка. В медленной стадии реакции образуется карбокатион - частица, способная к перегруппировке. Галогеналканы могут реагировать по механизму SN1 через стадию перегруппировки первоначально образующегося карбокатиона: если в результате 1,2-сдвига отрицательно заряженной частицы образуется более устойчивый карбокатион, то происходит перегруппировка.

Перегруппировка считается признаком SN1-механизма.

Растворитель. Переходное состояние SN1-реакции более полярно, чем исходное состояние. Увеличение полярности растворителя способствует большей сольватации переходного состояния по сравнению с сольватацией исходного соединения. Это приводит к росту скорости реакции.

При проведении SN1-реакции используют протонные растворители с высокой диэлектрической проницаемостью, способные образовывать водородные связи.

Рис.2.5. Влияние полярности растворителя на скорость реакции мономолекулярного нуклеофильного замещения

В растворителе, имеющем высокую диэлектрическую проницаемость, легче протекает ионизация галогеналкана, но, в отличие от апротонных растворителей, в протонном сольватируется не только карбокатион, но и ион галогена, образуя с ним водородные связи.

Сольватация сопровождается выделением значительного количества энергии, которая может быть затрачена на ионизацию новых исходных молекул, что приводит к ускорению реакции.

Сольватация нуклеофила не влияет на скорость реакции, так как даже стабилизированный сольватацией нуклеофил быстро реагирует с карбокатионом.

Стереохимия. В карбокатионе, образующемся в медленной стадии, связи sp2 -гибридизованного атома углерода расположены в одной плоскости. Если SN1-замещение протекает у хирального атома углерода, то образующийся плоский карбокатион становится ахиральным.

Последующая атака нуклеофильного реагента происходит с одинаковой вероятностью и с той и с другой стороны плоского карбокатиона. Следовательно, половина образующихся молекул будет иметь ту же конфигурацию, что и исходное соединение, а половина - будет его зеркальным изображением, т.е. образуется эквимолекулярная смесь энантиомеров - рацемат. Такая реакция приводит к оптически неактивному продукту.

В том случае, если уходящий галогенид-ион не успевает отойти от реакционного центра, он затрудняет атаку нуклеофила со своей стороны. Это приводит к образованию большего количества изомера с конфигурацией, противоположной конфигурации исходного соединения. Тогда имеет место частичная рацемизация.

Реакционная способность. Главным фактором, определяющим реакционную способность в SN1-реакции, является электронный фактор - устойчивость образующегося в медленной стадии реакции карбокатиона. Чем устойчивее карбокатион, тем легче он образуется, тем быстрее протекает замещение.

2.1.3. Сравнение реакций SN 1 и SN 2

Каждый из этих механизмов в чистом виде встречается очень редко. Реакционная способность в SN2-реакции уменьшается при переходе от СН3-Х к первичным RCH2-X, для вторичных - она гораздо меньше и появляется значительный вклад SN1-реакций. При переходе от вторичных к третичным галогеналканам реакционная способность в SN1-реакции резко возрастает.

Изменяя условия протекания реакций, можно направить процесс преимущественно по тому или иному механизму.

Таблица 2.2

Влияние условий реакции на относительное значение двух механизмов

Механизм

Растворитель

Сила нуклеофила

Концентрация

нуклеофила

SN1

Протонный

Более слабый

Меньшая

SN2

Апротонный

Более сильный

Бóльшая

2.2. Реакции отщепления (элиминирование)

В ходе реакции элиминирования от молекулы галогеналкана отщепляются два фрагмента: ион галогена (уходящая группа) от Сa и протон - от соседнего атома углерода Сb. Такой тип реакций называется b-элиминированием.

2.2.1. Бимолекулярное отщепление Е2

Реакция отщепления галогеноводорода от первичных галогеналканов протекает по бимолекулярному механизму Е2.


Страница: