Синтез химико-технологической схемы
1.2.2 Абсорберы
В абсорберах происходит поглощение (абсорбция) компонента С из газовой смеси жидким поглотителем (абсорбентом). Процесс абсорбции может быть описан с помощью уравнений массообмена. Однако, поскольку в п. 1.1.2. была получена статистическая модель абсорберов и определены выходные параметры – Твых и степень поглощения y, в расчетах абсорберов 1 и 2 мы пользовались ею. Расчет абсорберов велся совместно с расчетом реакторов, что обусловлено причинами, приведенными выше. Результаты расчета абсорберов приведены в таблице 4.
Таблица 4. Результаты расчета абсорберов.
Параметр |
Абсорбер 1 |
Абсорбер 2 |
Vабс, м³ |
25 |
26 |
Плотность орошения, м³/м² |
18 |
18 |
Твх, °C |
180 |
175 |
Объемный расход смеси на входе в абсорбер, м³/ч |
114600 |
106700 |
Концентрации компонентов на входе в абсорбер, об.доли А В С |
0,00373 0,051 0,077 |
0,0001597 0,053 0,014 |
Твых, °C |
51,6 |
49,2 |
Степень абсорбции y |
0,8757 |
0,9002 |
Концентрации компонентов на выходе из абсорбера, об. доли А В С |
0,004 0,055 0,01 |
0,0001617 0,054 0,001415 |
Количество отделенного компонента С, кмоль/ч |
344,97 |
60,014 |
Как видно из таблицы 4, абсорбер 1 работает достаточно хорошо, а для абсорбера 2 характерна низкая производительность. Отчасти это объясняется причинами, указанными в п. 1.2.2.
1.3 Синтез оптимальной тепловой системы с помощью
эвристического метода
Задача синтеза систем теплообмена формулируется следующим образом. Пусть имеется m горячих и n холодных потоков, которые мы будем называть основными технологическими потоками. для каждого из этих потоков заданы начальные температуры , конечные температуры и значения водяных эквивалентов . Под водяным эквивалентом будем понимать произведение теплового расхода на удельную теплоемкость. Необходимо определить структуру технологических связей между теплообменными аппаратами заданного типа, а также площади поверхности теплообмена каждого аппарата, которые обеспечивали бы заданные начальные и конечные температуры основных технологических потоков при минимальном возможном значении приведенных технологических затрат Зпр, связанных с эксплуатацией синтезированной тепловой системы.
Синтезируемую тепловую систему можно разделить на две подсистемы: внутреннюю (рекуперативную), где в теплообмене участвуют только основные технологические потоки, и внешнюю, где при теплообмене используются вспомогательные технологические потоки. При этом внешняя подсистема используется только тогда, когда во внутренней подсистеме не удается получить заданные конечные температуры.
Приведенные технологические затраты, связанные с эксплуатацией синтезируемой тепловой системы, могут быть выражены следующим образом:
, (21)
где З1 – затраты на рекуперативные теплообменники, ус.д.ед.;
З2 – затраты на вспомогательные теплообменники, ус.д.ед.;
З3 – затраты на вспомогательные теплоносители, ус.д.ед.;
Ен – нормативный коэффициент эффективности.
Если во внутренней подсистеме используется k1 теплообменных аппаратов, а во внешней l1 , то
, (22)
где Ц – стоимость теплообменника.
При расчете i-го теплообменника любой подсистемы используется формула:
, (23)
где Fi – площадь поверхности теплообмена i-го теплообменника, м²;
a – стоимостной коэффициент, зависящий от типа теплообменника.
Затраты на вспомогательные теплоносители определяются по формуле:
, (24)
где θ – продолжительность годовой эксплуатации системы, ч/год;
Цp – стоимость p-го вспомогательного теплоносителя в p-м вспомогательном теплообменнике, ус.д.ед./кг;
Gpl – расход p-го вспомогательного теплоносителя в l-м вспомогательном теплообменнике, кг/ч;
p1,l1- число вспомогательных теплоносителей и теплообменников соответственно.
При синтезе тепловой системы используются следующие формулы:
, (25)
где Q – тепловая нагрузка теплообменника, Вт;
K – коэффициент теплопередачи, Вт/(м²*К);
Δtср – средняя разность температур, К.
Тепловая нагрузка теплообменника или количество тепла, переданное в одном аппарате, определяется на основе концепции передачи максимально возможного количества тепла при минимально допустимой разности температур на концах теплообменника:
если , то теплообмен невозможен;
если , то ;
если , то .
, (26а)
, (26б)
, (26в)
, (27а)
. (27б)
Задача синтеза тепловой системы решается путем формирования множества возможных комбинаций исходных горячих потоков и холодных потоков для проведения физически реализуемых операций теплообмена в теплообменном аппарате. Для этой цели строят таблицу пар взаимодействующих потоков, исходя из условия Q→max. Из таблицы пар выбирается пара потоков, вступающих во взаимный теплообмен. Если в результате теплообмена данные потоки достигли заданных конечных температур, то они исключаются из рассмотрения. Иначе, начальным температурам этих потоков присваиваются значения конечных температур результирующих потоков, после чего таблица пар перестраивается, и выбирается новая пара потоков. Данная операция производится до тех пор, пока не останется потоков, способных вступать во взаимный теплообмен, или все потоки достигнут требуемых конечных температур.