Синтез химико-технологической схемы
Рефераты >> Химия >> Синтез химико-технологической схемы

, (6)

где m=2 – количество определяемых констант.

Согласно Приложению 1 =0,001621.

Определение параметров a и b можно рассматривать как результат косвенных измерений. Для того, чтобы оценить точность определения параметра, можно воспользоваться законом накопления ошибок. Тогда дисперсии параметров a и b:

, (7а)

. (7б)

=7991,043,=0,013721.

Погрешности определения параметров a и b:

, (8а)

, (8б)

где t – значение критерия Стьюдента для степени достоверности α (α=0,95) и степени свободы f=n-1.

Δa=199,3,Δb=0,26.

Погрешности определяемых k0 и E: Δk0=k0*Δb=4857,21; ΔE=R*Δa=1657,36.

1.1.2 Получение статистической модели абсорбера с помощью

метода Брандона

Сложный технологический процесс можно рассматривать как многомерный объект, на который действуют вектор входных параметров X и вектор управления Z. Выходные параметры составляют вектор выходных параметров Y. Общий вид статистической модели такого объекта в векторной форме

Y=f(X,Z). (9)

Для построения статистической модели абсорберов по данным таблицы 2 использовался метод Брандона (см. Приложение 2).

Сущность метода заключается в следующем. Предполагается, что функция F(x1,x2,…,xm) в формуле (9) является произведением функций от входных параметров, т.е.

, (10)

где yрi – расчетное значение i –го выходного параметра;

- средняя величина экспериментальных значений i – го выход-ного параметра;

n – количество опытов в исходной выборке.

При использовании метода Брандона важен порядок следования функций в уравнении (10). Чем больше влияние оказывает фактор на выходной параметр, тем меньшим должен быть его порядковый номер в указанном уравнении. Поэтому задача построения модели по методу Брандона разбивается на два этапа:

1. ранжирование влияющих факторов.

2. выбор вида зависимости и построение статистической модели.

Оценить степень влияния k-го фактора на выходной параметр можно по величине частного коэффициента множественной корреляции:

, (11)

где - величина частного коэффициента корреляции, учитывающая влияние k-го фактора на выходной параметр y при условии, что влияние всех прочих факторов исключено; D- определитель матрицы, построенной из парных коэффициентов корреляции. Матрица имеет вид

Dm+1,k – определитель матрицы с вычеркнутыми m+1 строкой и k-м столбцом;

Dk,k , Dm+1,m+1 – определители матриц с вычеркнутыми k-м и (m+1)-м столбцом и строкой соответственно.

Порядок расположения влияющих факторов в уравнении (10) определяют в соответствии с убыванием величины частных коэффициентов корреляции.

В уравнении (10) каждая из функций f1(x1),f2(x2),…fm(xm) принимается либо линейной, либо нелинейной (степенной, показательной, экспоненциальной и т.д.)

Перед определением вида первой зависимости следует представить исходные экспериментальные значения выходного параметра в каждом опыте yэj в безразмерной форме yэ0j :

, (12)

где yср- средняя величина выходного параметра.

Таким образом, исходными данными для поиска первой зависимости будут нормированные значения вектора выходных параметров и опытные значения первого влияющего фактора. Поиск зависимости yр1=f1(x1) может осуществляться по-разному.

Выбрав зависимость yр1=f1(x1), определяют остаточный показатель yэ1 для каждого наблюдения:

. (13)

Предполагая, что yэ1 не зависит от x1 ,а зависит от x2,…,xm , выбирают зависимость от второго фактора. Получив расчетную зависимость yр2=f2(x2 ), находят остаточный показатель yэ2 для каждого наблюдения:

. (14)

Выполнив аналогичные действия для каждого k-го влияющего фактора, получают регрессионную зависимость для рассмотренного выходного параметра. Порядок расположения факторов для этой зависимости определен на этапе ранжирования и отличается от порядка факторов в уравнении (10). Совокупность зависимостей по каждому выходному параметру представляет собой статистическую модель многомерного технологического объекта.

Для определения адекватности модели используют оценки адекватности – корреляционное соотношение η и среднюю относительную оценку ε:

; (15)

. (16)

В данной работе для построения статистической модели абсорберов 1 и 2 применялись электронные таблицы Excel. В статистической модели имелось 3 входных параметра – Tвх, плотность орошения П и объем абсорбера Vабс. Поскольку для рассматриваемой модели имели место два выходных параметра – Твых и степень абсорбции y, требовалось получить две отдельных статистических модели.

Для построения матрицы коэффициентов парной корреляции использовалась надстройка «Анализ данных» - «Корреляция». Для нахождения определителей матриц D использовалась стандартная функция МОПРЕД(массив). После ранжирования факторов осуществлен подбор зависимостей выходных параметров от влияющих факторов, зависимости определялись с применением линий тренда на графике функций yэj=fj(xj)(выбраны зависимости, имеющие наибольшую величину досто-верности аппроксимации R^2).

Результаты:

1. Твых: результат ранжирования факторов: x1-Vабс; x2-П; x3-Твх.

f1(Vабс)=-0,001*(Vабс)^2+0,0152*Vабс+1,2384;

f2(П)=-0,0311*П+1,5259 ;

f3(Твх)=0,7074*exp(0,0019*Твх);

Твых=53,95*(-0,001*(Vабс)^2+0,0152*Vабс+1,2384)*

*(-0,0311*П+1,5259)*(0,7074*exp(0,0019*Твх)).

η=0,9802;

ε=1,9 %.

2. y: результат ранжирования факторов: x1-П; x2-Vабс; x3-Твх.

f1(П)=0,0015*П²-0,0208*П+0,9224 ;

f2(Vабс)=0,0178*Vабс+0,5546;

f3(Tвх)=-0,3571*ln(Tвх)+2,8582;

y=84,4*(0,0015*П²-0,0208*П+0,9224)*(0,0178*Vабс+0,5546)*

*(-0,3571*ln(Tвх)+2,8582);

η=0,9743;

ε=1,33 %.

Обе модели адекватно описывают процесс.

В соответствии с Заданием для абсорбера 1 определены значения входных параметров: Твх=180°C, П=18 м³/м², Vабс=25 м³. В соответствии с разработанной статистической моделью для абсорбера 1 получены значения выходных параметров: Твых=51,6°C, y=87,57.


Страница: