Синтез привитых сополимеров поликапроамида с полиметакриловой кислотой
Модификация поликапроамидных волокон путем синтеза привитых сополимеров поликапроамида (ПКА) и полиметакриловой кислоты (ПМАК) представляет интерес не только с точки зрения улучшения их гидрофиль-ности и понижения электризуемости, но и для получения волокон с ионообменными свойствами [1].
В литературе описаны различные методы инициирования прививочной полимеризации МАК к ПКА. Авторы работ [2, 3] осуществляли синтез привитых сополимеров ПКА и ПМАК в присутствии перекисных инициаторов. Возможность применения окислительно-восстановительной системы тиомочевина — бромат калия для инициирования реакции прививочной полимеризации описана в работе [4]. Авторами работы [5] разработан метод анионной прививочной полимеризации МАК к ПКА, предусматривающий предварительную «металлизацию» полимерной подложки метилатами калия, лития или натрия в среде органических растворителей. Общим недостатком описанных методов синтеза является сравнительно низкая эффективность прививки из-за образования гомополимера в ходе реакции. Недавно были опубликованы интересные результаты по синтезу привитых сополимеров ПКА с использованием окислительно-восстановительной системы (ОВС) K2S208 — Na2S203 в присутствии ионов Fe2+ [6]. Эта инициирующая система позволяет получить привитые сополимеры практически без образования гомополимера.
Известно, что в ряде случаев более эффективным компонентом ОВС по сравнению с ионами железа являются ионы меди. В связи с этим существенный интерес представляют исследования реакции прививочной полимеризации МАК к ПКА с использованием системы K2S2О8 — Na2S2О3 в присутствии Cu+(Cu2+), а также изучение кинетических закономерностей процесса прививки, результаты которых приведены в настоящей статье.
Прививку осуществляли на ПКА-волокно, содержащее медь, в водном растворе мономера (рН 2,8), в который добавляли пероксодисульфат (0,2.% от веса мономера) и тиосульфат при различных мольных соотношениях. Медь вводили в волокно двумя методами: путем предварительной обработки водным раствором CuSCU в течение 10 мин и отжима, обеспечивающего содержание Си2+ 0,002% от веса волокна, а также путем введения в волокно на стадии его формования гептаазоциклогексодецинового комплекса (Сu+). Реакцию прививочной полимеризации проводили при 333— 343 К в течение различного времени. Образцы экстрагировали горячей водой для удаления непрореагировавшего мономера и сушили до постоянного веса. Степень прививки определяли гравиметрически и титрованием (по содержанию СООН-групп в привитом сополимере). Исследования сорбции МАК ПКА-волокном проводили спектрофотометрическим определением концентрации мономера в водном растворе (при Х=208 нм). Конверсию мономера в процессе гомополимеризации рассчитывали также па основе спектрофотометрических данных.
Была исследована зависимость количества привитой к (содержащему ПКА волокну ПМАК от концентрации раствора МАК (рис. 1). Как и следовало ожидать, с увеличением концентрации мономера количество привитой ПМАК значительно возрастает. При этом образование гомополимера было обнаружено только при использовании раствора с концентрацией 1,16 моль/л по истечении индукционного периода, равного 30 мин. Сравнение хода кинетических кривых для растворов МАК концентрации 0,93 и 1,16 моль/л указывает на возможность образования на более ранних стадиях процесса низкомолекулярного гомополимера (при прививке из раствора концентрацией 1,16 моль/л), не осаждаемого ацетоном. Этим, очевидно, и обусловлено незначительное уменьшение начальной скорости полимеризации с ростом концентрации МАК выше 0,93 моль/л (рис. 2).
Порядок реакции по мономеру, рассчитанный на основании кинетических данных, оказался равным 2,2, что значительно превосходит обычно наблюдаемый порядок радикальной полимеризации и указывает на возможное участие МАК в стадии инициирования.
С целью выяснения особенностей прививочной полимеризации МАК к ПКА-волокну, протекающей с относительной высокой скоростью и не сопровождающейся отдельно образованием гомополимера, была исследована реакция гомополимеризации МАК в аналогичных условиях в отсутствие волокна, а также в присутствии модельного ПП-волокна (в принятых условиях реакция передачи цепи на ПП не протекает).
Рис. 1. Зависимость содержания привитого компонента в привитом сополимере ПКА — ПМАК от времени реакции, инициируемой ОВС K2S2O8 — Na2S203 (1:2). Содержание Си2+ на волокне 0,002%; 333 К; модуль 1:30 [МАК]=0,23 (7); 0,46 (2); 0,69 (3); 0,93 (4) и 1,16 моль/л (5)
Рис. 2. Зависимость начальной скорости реакции прививочной сополимеризации от концентрации МАК в растворе. рН 2,8; 333 К; K2S208: Na2S203=l : 2; [Cu+]=0,002%
Рис. 3. Зависимость количества привитой ПМАК от мольного соотношения компонентов инициирующей системы K2S208 — Na2S203 при проведении реакции в течение 20 (1) и 40 мин (2). [МАК] =0,93 моль/л, 333 К;[Сu+] =0,002%
Рис. 4. Зависимость количества сорбированной на ПКА-волокне МАК от концентрации МАК в растворе и продолжительности обработки. Т= =333 (1-3) и 343 К (4, 5). [МАК]=0,69 (1); 0,93 (2); 1,16 (5); 0,69 (4) и 0,93 моль/л (5)
Согласно полученным данным (таблица), полимеризация МАК в отсутствие, а особенно в присутствии модельного волокна, протекает с очень низкой скоростью. Интересно отметить, что за время, в течение которого в условиях прививочной полимеризации МАК к ПКА-волокну осуществляется прививка 80—90% от максимального количества МАК, конверсия мономера в реакции гомополимеризации составляет всего 4—6%.
Эти результаты позволяют сделать вывод о том, что макромолекулы ПКА активно участвуют в реакции передачи цепи от радикалов SО4~ с образованием макрорадикала, инициирующего реакцию прививки МАК.
Генерирование свободных SО4~ ион-радикалов в системе K2S2О8 — Na2S2О3 происходит по известному механизму [7].
Следует отметить, что в отличие от обычно используемых ОВС, в которых соотношение окислитель: восстановитель составляет, 1: (1—0,5), необходимым условием для инициирования прививочной полимеризации без образования гомополимера системой K2S2О8—Na2S2О3 как в присутствии, так и в отсутствие ионов меди является значительный избыток восстановителя. Согласно полученным данным (рис. 3), при значениях Na2S2О3: : K2S2О8 ниже 1,7 в реакционной системе параллельно с прививочной полимеризацией протекает и гомополимеризация прививаемого мономера. Количество образующейся при этом ПМАК уменьшается по мере увеличения мольного соотношения восстановитель: окислитель. Оптимальное соотношение, при котором достигается максимальная эффективность прививки и выход привитого сополимера без образования гомополимера составляет 2,5. На основании этих данных можно сделать вывод о том, что первичные радикалы S04~ и ОН, отличающиеся очень высокой абсолютной константой реакции инициирования гомополимеризации МАК [8], быстро гибнут в растворе в результате протекания реакции с S2О32~. Этому способствует высокая концентрация Na2S2О3 в растворе и его значительно** лучшая растворимость в воде по сравнению с K2S2Оs, хорошо сорбируемым на волокне. Образующийся при разложении инициатора тиосульфатный ион-радикал S2Os*_, как известно [9], малоактивен в реакции инициировании, и его дальнейшие превращения приводят к образованию неактивных продуктов [7].