Силикагель и его применение в высокоэффективной жидкостной хроматографии
Геометрическая структура силикагеля не является единственным фактором, определяющим его адсорбционную активность. При этом важную роль играет химическая природа его поверхности, которую можно варьировать термической дегидратацией, проведением на поверхности силикагеля самых различных реакций, дающих новые соединения. К таким реакциям относятся алкоксилирование, хлорирование, взаимодействие поверхности силикагеля с алкил- и арилхлорсиланами и т.д.
Придание силикагелю специфичности в отношении адсорбции тех или иных веществ значительно расширяет области его применения. В связи с этим перспективным является химическое модифицирование силикагелей органическими радикалами с различными функциональными группами.
1.3 Химически модифицированные силикагели
Адсорбционные свойства силикагелей наряду с геометрией структуры и пористостью в значительной степени зависят от химической природы их поверхности.
Поверхность силикагелей покрыта гидроксильными группами. Адсорбционные и другие свойства силикагелей зависят от количества и концентрации на их поверхности гидроксильных групп. Изменение химической природы поверхности силикагелей в результате термической дегидратации, регидратации или вследствие замещения гидроксилов на различные атомы или органические радикалы вызывает резкое изменение адсорбционных и технологических свойств силикагеля.
В связи с тем, что электронная d-оболочка кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности силикагеля таково, что в них отрицательный заряд сильно смещен к атому кислорода, а атом водорода частично протонизирован, образуя протонный кислотный центр [12]. Это обеспечивает специфическое взаимодействие поверхности силикагеля со связями или звеньями молекул, обладающих сосредоточенной на периферии электронной плотностью [12]. Поэтому естественно, что при частичном или полном замещении гидроксильных групп силикагеля атомами фтора или органическими радикалами, благодаря выключению из адсорбционного процесса всех или части гидроксилов, наблюдается уменьшение адсорбции веществ, у которых в адсорбционном взаимодействии играет роль донорно-акцепторная компонента.
Модифицирование поверхности силикагелей органическими радикалами с четко выраженными основными или кислотными свойствами приводит к получению специфических адсорбентов, избирательно поглощающих вещества кислотного или основного характера, для которых такие радикалы являются активными центрами адсорбции. Характер адсорбционных свойств модифицированных силикагелей с функциональными группами определяется как размерами радикалов, так и его химическими свойствами.
Одним из направлений применения химически модифицированных силикагелей в химическом анализе является ВЭЖХ.
1.4 Использование сорбентов на основе силикагеля в хроматографических методах анализа
Хроматография - это метод разделения компонентов смеси, основанный на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна. Чем сильнее сродство компонента к неподвижной фазе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компоненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержатся в начале пути, другие продвинутся дальше. В хроматографическом процессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) аспекты.
Различные методы хроматографии можно классифицировать по агрегатному состоянию фаз, механизму разделения, аппаратурному оформлению процесса (по форме) и по способу перемещения подвижной фазы и хроматографируемой смеси [13].
По агрегатному состоянию фаз различаютжидкостную и газовую хроматографию.
По технике выполнения хроматографию подразделяют на колоночную (разделение веществ проводится в специальных колонках) и плоскостную: тонкослойную и бумажную. В тонкослойной хроматографии разделение проводится в тонком слое сорбента, в бумажной - на специальной бумаге.
Хроматография как метод была открыта в 1903 г. русским ученым-ботаником М.С. Цветом, который использовал для разделения растительных пигментов на их составляющие колонки, заполненные порошком мела [14]. При вымывании пигментов петролейным эфиром они перемещались вдоль колонки, разделяясь при этом на кольца разного цвета. Метод оказался очень удобным и был позднее назван Цветом хроматографией (цветописью).
Отправной точкой бурного развития многих методов хроматографического анализа является работа лауреатов Нобелевской премии A. Мартина и Р. Синджа. Ими был предложен и разработан метод распределительной хроматографии (1941 г.). В 1952 г. А. Мартином и Л. Джеймсом были получены первые результаты в области газожидкостной хроматографии. Эти работы вызвали огромное число исследований, направленных на развитие метода газовой хроматографии.
За короткое время были усовершенствованы конструкции систем ввода проб, созданы чувствительные детекторы. Метод газовой хроматографии - первый из хроматографических методов, получивших инструментальное обеспечение. Если в 50-е и 60-е годы методы хроматографии в тонких слоях (бумажная и тонкослойная) в значительной мере заменили колоночную как более быстрые, удобные и простые, то 70-е годы характеризуются гигантским прогрессом именно высокоэффективной (инструментальной) жидкостной хроматографии, где для ускорения процесса хроматографирование проводят под давлением.
ВЭЖХ в настоящее время не только в большой мере вытеснила классическую колоночную, бумажную и тонкослойную хроматографию (далее по тексту ТСХ), но и обогнала газовую хроматографию по темпам развития. Быстрый рост применения ВЭЖХ связан с освоением и серийным выпуском как отдельных узлов (насосов, инжекторов, детекторов), так и комплектных жидкостных хроматографов. Немалую роль сыграли также разработка теоретических основ ВЭЖХ, организация выпуска высокочистых растворителей и химикатов для ВЭЖХ. Особенно следует отметить организацию выпуска узкодисперсных сорбентов зернением от 3 до 10 мкм на основе силикагеля, в том числе и с химически привитыми неподвижными фазами, и разработку способов заполнения ими высокоэффективных колонок для ВЭЖХ [15].
Причин быстрого развития ВЭЖХ несколько. Прежде всего, следует назвать большой диапазон молекулярных масс веществ, с которыми можно работать: от нескольких единиц до десятков миллионов, что существенно шире, чем в газовой хроматографии. Кроме того, мягкость условий ВЭЖХ (почти все разделения можно проводить при температурах, близких к комнатной, при отсутствии контакта с воздухом) делает ее особенно пригодным, а зачастую единственным методом исследования лабильных соединений, в частности, биологически активных веществ и биополимеров [17].
Среди разнообразных методов анализа ВЭЖХ отличается самой высокой степенью информативности благодаря одновременной реализации функций разделения, идентификации и определения; избирательностью; низким пределом обнаружения, а также возможностью автоматизации и компьютеризации процесса разделения, обнаружения и количественного определения. Хроматографический метод анализа универсален и применим к разнообразным объектам исследования (нефть, лекарственные препараты, вещества растительного и животного происхождения, биологические жидкости, пищевые продукты и др.) [17].