Связь автоускорения при радикальной полимеризации метилметакрилата в массе со структурными изменениями полимеризующейся системы
Рефераты >> Химия >> Связь автоускорения при радикальной полимеризации метилметакрилата в массе со структурными изменениями полимеризующейся системы

На рис. 3 приведены зависимости lg G0 от q, которые представляют собой плавные кривые с характерным резким уменьшением модуля высокоэластичности при снижении концентрации полимера в системе. Минимальные степени превращения, при которых удавалось измерить начальный модуль высокоэластичности (т. е. соответствующие началу проявления реакционной системой высокоэластичности) указаны стрелками на концентрационных зависимостях вязкости (рис. 2). Важно, что их положение практически совпадает со вторым изломом на этих кривых.

Представляло интерес выяснить, будут ли характеристические концентрации полимера в системе, фиксируемые при измерении реологических параметров полимеризатов, подчиняться зависимости типа (1). Положительный ответ на этот вопрос дает рис. 4, на котором в логарифмических координатах представлены результаты определения кинетическим и реологическим методами характеристических конверсии, полученные в данной работе. Для обеих характеристических концентраций полимера в реакционной системе, фиксируемых реологически, параметр а уравнения (1) равен 0,5. Постоянная К для первого перехода равна 215, для второго — 675. Кроме того, на рис. 4 приведены результаты определения характеристических концентраций полимера в растворе, полученные нами ранее [19, 20] другими методами, а также характеристические концентрации, рассчитанные теоретически. Видно, что все зависимости характеристических концентраций от степени полимеризации образующегося полимера, построенные в логарифмических координатах, укладываются на прямые, незначительно отличающиеся углами наклона (следовательно, имеющие близкие значения параметра а) и смещенные относительно друг друга по шкале концентраций (т. е. различающиеся величиной отрезка, отсекаемого на оси ординат, определяющего значение К). Все прямые рис. 4 можно разделить по углу наклона и их относительному расположению по шкале концентраций на три группы, которые и будут охарактеризованы ниже.

Рассмотрим в этой связи последовательность структурных превращений в полимеризующейся системе в ходе реакции (т. е. с увеличением концентрации полимера) и проанализируем возможную связь этих превращений с кинетикой полимеризации. Известно, что первой естественной границей при увеличении концентрации полимера является переход от разбавленного к умеренно концентрированному раствору при критической концентрации перекрывания макромолекулярных клубков. Эта концентрация определяется средней концентрацией звеньев макромолекулы в объеме изолированного полимерного клубка

(2)

где_Р„ — среднечисленная степень полимеризации растворенного полимера, a R — радиус инерции. В свою очередь

(3)

где v — степенной показатель исключенного объема, равный 0,6 для хорошего растворителя и 0,5 для б-растворителя. Из выражений (2) и (3) следует, что

(4)

т.е. получается уравнение типа (1), в котором степенной показатель при Рп изменяется в пределах от 0,5 до 0,8 в зависимости от термодинамического качества растворителя, а величина const определяется множителями в соотношениях (2) и (3).

Простейшим экспериментальным способом определения с* является измерение характеристической вязкости данного полимера в данном растворителе. Измерения характеристических вязкостей ПММА в ММА при 60° были проведены нами ранее [19], а соответствующие результаты (в простейшем предположении, что с*=1/[п]) представлены нижней прямой на рис. 4. В работе [19] мы наблюдали переход от разбавленного к умеренно концентрированному раствору в ходе полимеризации ММА также и методом светорассеяния. Было показано, что интенсивность рассеяния реакционными системами под углом 90° проходит через максимум при степенях превращения, соответствующих с*. При изменении ММ образующегося ПММА положение максимума интенсивности смещается по шкале конверсии, а соответствующие им точки также ложатся на прямую в координатах рис. 4, расположенную несколько выше прямой 1/[п]. Характерно, что углы наклона этих двух прямых, составляющих первую группу, отличаются от углов наклона других прямых рис. 4 и равны между собой. Их тангенс наклона составляет 0,6 (т. е. 3v - 1=0,6). Последнее обстоятельство свидетельствует о том, что ММА как растворитель для ПММА уже в разбавленном растворе приближается к растворителю. Следует отметить, что ни кинетика полимеризации, ни реологические измерения в системе не чувствительны к переходу от разбавленного к умеренно концентрированному раствору, по-видимому, вследствие того, что при этих концентрациях еще не происходит изменения характера диффузии полимерных клубков.

Последующее увеличение концентрации полимера в реакционной смеси выше некоторого другого характеристического значения сопровождается увеличением темпа нарастания вязкости (т. е. переломом на реологической кривой) и появлением минимума скорости полимеризации на дифференциальной кинетической кривой. Обе характеристические концентрации, фиксируемые кинетическим и реологическим методами, подчиняются уравнению типа (1) и составляют вторую группу прямых на рис. 4.

Известно, что при концентрациях полимера в растворе выше концентрации заполнения объема набухшими клубками происходит уменьшение среднего размера клубков до невозмущенного 9-размера и их частичное взаимное проникновение [21]. Характеристические концентрации полимера в растворе, при которых заполняется весь объем эквивалентными клубками, поджатыми до 8-размера, и выравниваются плотности сегментов в растворе, могут быть вычислены из уравнения (5), полученного рядом авторов и проанализированного в работе [18]

где NA — число Авогадро, Re — средний радиус инерции невозмущенного клубка, параметр А, изменяющийся в пределах ~0,2—1,0, зависит от выбора радиуса эквивалентной сферы полимерных клубков в растворе и от характера их упаковки.

Уравнение (5) фактически эквивалентно соотношению (2). Представляло интерес сопоставить концентрации полимера в реакционной системе, при которых происходят переходы, фиксируемые реологическим и кинетическим методами, с характеристическими концентрациями, предсказываемыми уравнением (5). Последние были рассчитаны при использовании усредненного значения (Re/M4') =580- 10~и см [22] для ПММА и предположения о плотнейшей гексагональной упаковке эквивалентных Э-сфер (когда А =0,18 [23]). Расчетные значения практически совпадают с концентрациями, соответствующими первому перелому на реологических кривых, и примерно вдвое меньше концентраций, соответствующих минимумам приведенной скорости полимеризации (рис. 4). Соприкосновение невозмущенных клубков при их концентрировании приводит к повышению темпа роста вязкости реакционных систем при увеличении концентрации. Этот эффект, по-видимому, проявляется и в кинетике полимеризации в виде минимума скорости реакции, но при несколько больших концентрациях полимера. В работе [13] было высказано предположение о том, что минимум скорости реакции наблюдается при конверсиях, еще недостаточных для обнаружения отклонения от линейной зависимости вязкости от степени превращения. Проведенный нами эксперимент для системы ММА — ПММА доказывает обратное. Дальнейшее увеличение степени превращения должно приводить к взаимному проникновению сжатых до О-размера клубков ПММА, к их перепутыванию с образованием устойчивой и однородной по объему сетки зацеплений. Этот переход фиксируется одновременно как реологически (по дополнительному увеличению темпа нарастания вязкости и обнаружению высокоэластической деформации полимеризующейся системы), так и кинетически (по резкому увеличению скорости полимеризации). На кривых зависимостей светорассеяния от степени превращения в этой области концентраций ранее наблюдали выход на участок линейного уменьшения интенсивности рассеяния [19]. Соответствующие значения характеристических конверсии, полученные различными методами, в логарифмических координатах (рис. 4) ложатся на близко расположенные прямые с тангенсом угла наклона, равным 0,5 (третья группа прямых). Следует отметить, что уравнение (5) позволяет количественно описать характеристические концентрации дЛ0Г и концентрации, соответствующие перелому на реологических зависимостях, как функции степени полимеризации образующегося полимера, если принять, что радиус эквивалентной сферы полимерного клубка ДЭКв=0,665/?в (т. е. параметр А в уравнении (5) равен 0,6). Указанное соотношение между RBKB и Re было получено в теории Кирквуда — Райзмана при расчете коэффициента трения макромолекул [24]. Позднее оно было использовано в работах Оноги для расчета характеристических концентраций при исследовании реологических свойств концентрированных растворов полимеров [25] и в работах Тернера для определения конверсии наступления автоускорения [3]. Можно полагать, что изменение кинетической и реологической зависимостей, наблюдаемые при формировании сетки зацеплений, связаны с переходом от обычного к «рептационному» характеру диффузии макромолекул [26, 27]. Действительно, модель, связывающая наступление гель-эффекта с переходом от трехмерной диффузии макромолекул к одномерной («рептация»), позволила оценить константу К в уравнении (1), описывающем наступление автоускорения при радикальной полимеризации ММА. Эта величина оказалась порядка 103 в предположении α=0,5 [28]. Последующее увеличение степени превращения обусловливает дальнейшее снижение скорости бимолекулярного обрыва за счет увеличения плотности сетки зацеплений и не должно приводить к качественным изменениям характера диффузии реагирующих частиц в реакционной системе вплоть до наступления стеклования, когда и реакция роста цепи переходит в диффузионно-контролируемый режим. Следует отметить, что ни один из переходов на кинетических и реологических кривых не может быть охарактеризован универсальным значением вязкости или свободного объема реакционных систем.


Страница: