Редкоземельные металлы и их полуторные оксиды
Рефераты >> Химия >> Редкоземельные металлы и их полуторные оксиды

ОГЛАВЛЕНИЕ

1. Введение

2. Редкоземельные элементы

2.1 Европий

3. Влияние условий получения полуторных оксидов РЗЭ на их кристаллическое строение

3.1 Окисление металлов

4. Фазовые превращения полуторных оксидов РЗЭ

4.1 Необратимые или медленно протекающие фазовые превращения

4.2 Обратимые полиморфные превращения

4.3 Влияние давления на полиморфизм оксидов

5. Простые оксиды европия

6. Устойчивость полуторных оксидов РЗЭ

7. Стабилизация метастабильных форм полуторных оксидов РЗЭ

8. Заключение

9. Список литературы

1. ВВЕДЕНИЕ

Редкоземельные элементы (в минералогии — TR, от лат. terra rará), химические элементы побочной подгруппы III группы периодической системы Менделеева: скандий Sc (атомный номер Z = 21), иттрий Y (Z = 39), лантан La (Z = 57) и лантаноиды (14 элементов, Z от 58 до 71). Sc, однако, не всегда относят к редкоземельным элементам. В свободном виде — металлы. Название «редкоземельные» дано в связи с тем, что они, во-первых, сравнительно редко встречаются в земной коре и, во-вторых, образуют тугоплавкие, практически не растворимые в воде оксиды (такие оксиды в начале 19 в. и ранее назывались «землями»). Важная особенность редкоземельных элементов — их совместное нахождение в природе. Например, минерал монацит — один из основных источников этих элементов — содержит фосфаты Y, La и др. Подразделяются на иттриевую (Y, La, Gd-Lu) и цериевую (Се-Eu) подгруппы. Элементы Се-Eu называют легкими, a Cd-Lu-тяжелыми лантаноидами.

Электронная структура, лантаноидное сжатие, электронная конфигурация РЗЭ дана в табл. 1, у ионов М3+(М = Sc, Y, La) устойчивая конфигурация инертных газов. У Sc, Y и La в образовании химической связи участвуют d- и s-электроны, у других РЗЭ могут участвовать также f-электроны, однако близкие химические свойства РЗЭ определяются главным образом внешними d-и s-электронами. Поэтому эти элементы объединены в одну группу.

В состоянии М3+ РЗЭ имеют оболочку с 4f n-электронами (кроме Sc), в газовом состоянии-4f n+16s2 (кроме La, Ce, Gd и Lu, имеющих оболочку 4f n), в металлическом М°-4f n (для Еu и Yb-4f n + 1). Предполагается, что вакантная, заполненная наполовину и заполненная полностью f-оболочки обладают повышенной устойчивостью. Поэтому Sc, Y, La, Gd и Lu образуют только ионы М3+, для Се и Тb устойчиво также состояние М4+, а для Еu и Yb-также М2+ . Помимо электронной структуры на устойчивость валентных состояний РЗЭ влияют и другие факторы: например, ионы Sm+, Tm+ (конфигурации f 7 и f 14), Рr5+ (f 0), Dy5+ (f 7) крайне неустойчивы.

2. Редкоземельные элементы

РЗЭ-элементы - металлы серебристо-белого цвета, некоторые с желтоватым оттенком (Рr, Nd). Они пластичны и электропроводны, легко поддаются механической обработке. Многие свойства простых веществ и соединений изменяются симбатно в рядах La-Eu и Gd-Yb. Особенно резко отличаются свойства, отражающие переход из связанного состояния в свободное и обратно.

Например, при переходе из металлического состояния в парообразное мерой является давление пара металлов. При 25 °С давления паров РЗЭ различаются более чем на 40 порядков, а при 1000 °С - примерно на 10 порядков (минимальное давление характерно для La, Gd и Lu, максимальное - для Еu и Yb). Это связано с большой разницей в энергии, необходимой для перехода 4 d -электрона на 5d-уровень. С другой стороны, есть свойства, остающиеся примерно постоянными для всех РЗЭ. Вследствие лантаноидного сжатия при переходе от La к Lu ионные радиусы РЗЭ и их атомные радиусы (кроме Еu и Yb) плавно уменьшаются (рис. 1, 2), плотность простых веществ увеличивается [31].

2.1 Европий

Европий - это химический элемент, находящийся в третей группе периодической системы Менделеева и относящийся к лантаноидам. Его атомный номер 63, атомная масса 151.96. Мягкий металл, серебристо-белого цвета, плотностью 5.2456 г/см3, температура плавления = 8260С. По твердости европий очень похож на свинец- такой же мягкий и пластичный.

Европий - самый легкий из лантаноидов, и самый неустойчивый среди редкоземельных элементов - в присутствии кислорода воздуха и влаги быстро окисляется (корродирует).

В природе европий - малораспространенный элемент, даже среди редкоземельных элементов европий - один из самых редких, а потому и наиболее дорогих. В свободном виде не встречается, входит в состав таких минералов, как монацит (обезвоженный фосфат редкоземельных элементов цериевой группы - (Ce,La,Y,Th)PO4), бастнезит и других содержащих редкоземельные элементы минералов. В природные воды европий попадает в районах залегания пород, содержащих редкоземельные элементы, в результате его реакции с водой.

редкоземельный элемент металл европий оксид

3. ВЛИЯНИЕ УСЛОВИЙ ПОЛУЧЕНИЯ ПОЛУТОРНЫХ ОКСИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ НА ИХ КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ

3.1 Окисление металлов

В монографии Серебрянникова [9] имеется указание о том, что лёгкие редкоземельные металлы при нагревании в атмосфере кислорода воспламеняются: в результате горения образуются оксиды. Без нагревания металлическая поверхность в атмосфере сухого воздуха сохраняется довольно долго, во влажном воздухе она быстро покрывается слоем оксида.

Несколько более подробные данные находятся в работах Кремерса [10] и Лава [11]. Скорость атмосферной коррозии определялась Лавом на металлических образцах, вырезанных в виде пластин при температурах 35 и 950. Опыты проводили при разной относительной влажностях. Испытания при температурах 200, 400 и 600° проводили в трубчатой печи, через которую продували слабый ток воздуха.

При атмосферном окислении редкоземельных металлов образуются гидратированные оксиды с большим объемным приростом. Это приводит к разрушению защитной оксидной пленки и обнажению металлической поверхности. Корродирующее воздействие воздуха на редкоземельные металлы сильно зависит от природы последних. Европий окисляется почти так же энергично, как и натрий. Лантан и неодим окисляются довольно быстро (в сухом воздухе при комнатной температуре со скоростью от 1 до 100 мг/дм2 в сутки). Скорость окисления сильно возрастает с умеренным нагревом, причем наличие паров воды (75%-я относительная влажность) увеличивает скорость окисления при любой температуре приблизительно на один порядок. Прочие редкоземельные металлы и нитрий гораздо устойчивее. Скорость их окисления в сухом воздухе при комнатной температуре очень мала, но она существенно возрастает с нагревом (при температурах выше 200°) или во влажных условиях при температурах около 1000. Самарий отличается большой стойкостью в сухом воздухе, причем с повышением температуры от 200 до 6000 суточная коррозия возрастает от 35 мг/дм2.

В работе Ли Линда и Грина [12] для исследования использовались металлы повышенной чистоты (99.9%). Скорость окисления образцов определялась в сухом и в насыщенном влагой воздухе. Полученные результаты хорошо согласуются с данными работы Лава[11] (несколько меньшие скорости коррозии в работе [12] объясняются большей чистотой используемых в этой работе материалов).


Страница: