Расчет и подбор выпарной установки
Рефераты >> Химия >> Расчет и подбор выпарной установки

Первый корпус обогревается водяным паром, поступающим с ТЭЦ. Вторичный пар, образующийся при концентрировании раствора в первом корпусе, направляется в качестве греющего во второй корпус АВ2. Как уже было ранее сказано, часть вторичного пара - экстра-пар – направляется в качестве греющего в теплообменник Т и на бытовые нужды. Во второй корпус АВ2 направляется частично сконцентрированный раствор из первого корпуса. Аналогично третий корпус АВ3 обогревается вторичным паром второго и в нем производится концентрирование раствора, поступившего из второго корпуса.

Самопроизвольный переток раствора и вторичного пара в следующие корпуса возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара последнего корпуса в барометрическом конденсаторе смешения КБ, где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующейся паро-воздушной смеси вакуум-насосом. Смесь охлаждающей воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором. Образующийся в третьем корпусе концентрированный раствор центробежным насосом подаётся в промежуточную ёмкость упаренного раствора Е2.

Конденсат греющего пара из выпарных аппаратов выводится с помощью конденсатоотводчиков.

3. Теплотехнический расчёт выпарных аппаратов.

3.1. Расчёт общего количества выпаренной воды.

W = S0*(1-a0/a3) = 12000*(1-7/49) = 10285,7кг/ч

Предположим, что с учётом отвода экстра-пара в первом корпусе выпаренная вода между корпусами распределилась следующим образом:

W2 = W3 = (W-E1)/3 = (10285,7-300)/3 = 3328,5 кг/ч

W1 = W2+E1 =3328,5 +300 = 3628,5 кг/ч

Найдём концентрации а1 и а2:

W1 = S0*(1-a0/a1)

a1 = a0/(1-W1/s0)=7/(1-3628,5/12000) = 10,04% масс.

W1+W2 = S0*(1-a0/a2)

a2 = a0/(1-(W1+W2)/S0)=7/(1-6957/12000)=16,67% масс.

3.2. Расчет депрессий.

3.2.1. Гидравлические депрессии между корпусами принимаем равными 1.50С.

3.2.2. Температурные депрессии.

Для корпусов 1 и 2 депрессии берутся в предположении, что давления в них мало отличаются от атмосферного: d и d2 берутся при а1 и а2 как стандартные.

а1=10,04%масс. d =100,4-100,0=0,40С (1, стр. 37)

а2=16,67%масс. d2 =1,20С (1, стр. 37)

Для третьего корпуса значения t3, d3 и q3 находятся строго, т. к. здесь точно известны концентрация а3 и давление Р3: по правилу Бабо, если нужно, то с поправкой Стабникова В.Н.

Согласно правилу Бабо, отношения давления паров растворителя над раствором Р к давлению паров над чистым растворителем Рs при температуре кипения раствора не зависит от рабочего давления и температуры его кипения:

Р/Рs = (Р/Рs)ст = const

Т. о. Температура кипения раствора 49% (NH4)2SO4 при атмосферном давлении

t = 1070С. (3, стр. 510) Рsст = 1,294 бар=1,294*105 Па (2, стр. 17)

Const = (Р/Рs)ст =9,81*104/1,294*105 = 0,758

Тогда Рs=Р/ const=0,197/0,758=0,260 бар

По (2, стр. 23) находим искомую температуру кипения раствора, равную температуре кипения воды: t3 = 64,080С. Найдём q3:Р3=0,197 бар, то по (2, стр. 23) q3=58,70С.

Тогда d3реал = t3 - q3=64,08 - 58,7 = 5,38 0С.

3.3. Суммарная полезная разность температур:

Dс= Т1q3dd2-d3dгd2г = 147,1-58,7-0,4-1,2-5,38-1=80,420С

d2г примерно от 1 до 3 С. Принимаем dг = 1С

где давление греющего пара 0,4МПа (= 3,94ат), то по (2, стр.43) Т1=147,1 0С.

Dс=DD2+D3

D1:D2:D3=1 : 1,1 : 1,5

D1= 22,340С

D2= 24,570С

D3= 33,510С.

3.4. Заполнение предварительной таблицы.

Значения давлений и энтальпий взяты из (2, стр. 17).

Параметр

   

Предварит. Вар.

Окончат. Вар.

   

1

Темп. гр. Пара

Т

147,1

118,8

83,6

150,0

127,0

92,0

2

Полезн.разность темп.

D

22,34

24,57

33,51

18,6

29,0

48,8

3

Темп.кип р-ра

T

124,76

89,4

43,4

131,4

98,0

43,4

4

Темп.депрессия

d

2,9

4,3

4,7

2,9

4,3

4,7

5

Темп.вт. пара

q

120,3

85,1

38,7

128,5

93,7

38,7

6

Гидр.депрессия

d

1,5

1,5

 

1,5

1,5

 

7

Давл.гр. пара

Pгр

МПа

0,476

0,192

0,056

0,476

0,247

0,076


Страница: