Разработка методов и средств реабилитации объектов отравляющих веществ
Рефераты >> Химия >> Разработка методов и средств реабилитации объектов отравляющих веществ

Объект по УХО представляет собой сложный технологический комплекс, обеспечивающий уничтожение ТХ. В процессе уничтожения ТХ возможно несанкционированное высвобождение имеющихся на объекте факторов опасности. Субъекты, на которые действуют факторы опасности в случае проектных и запроектных аварий:

- производственный персонал объекта;

- основные производственные фонды объекта;

- окружающая среда.

Проектная авария – авария, масштабы и последствия которой учитываются при проектировании и создании объекта по УХО, рассчитываются и готовятся силы и средства, необходимые для ее локализации и ликвидации последствий. Запроектная авария – авария, масштабы и последствия которой можно только предполагать, готовность сил и средства для ликвидации последствий таких аварий на объекте может составлять часть от необходимого.

Распространение высвобождающегося при запроектной аварии ТХ зависит от состояния атмосферы. В условиях конвекции, когда почва нагрета сильнее воздуха, восходящие потоки вызывают быстрое «размывание» облака. Напротив, при инверсии (почва холоднее воздуха) наблюдаются наибольшие глубины распространения облаков. При слабом ветре облако зараженного воздуха затекает в лощины и обходит холмы, так как пары ТХ тяжелее воздуха и «стелются» по поверхности земли. Глубина распространения значительно снижается при наличии лесного покрова (примерно в 1,5 раза) по сравнению с распространением над равнинной местностью. При инверсии глубина распространения облака увеличивается примерно в 1,7 раза по сравнению с изотермией, а при конвекции уменьшается, что является вполне естественным. Чем неустойчивее атмосфера, тем интенсивнее идет перемешивание воздуха и тем быстрее разбавляется в нем примесь ТХ, следовательно, тем меньше будет глубина распространения действующих концентраций ТХ в облаке, способных нанести ту или иную степень поражения.

При устойчивой атмосфере отсутствуют значительные вертикальные перемешивания и движения, и температурный градиент атмосферы будет меньше, чем сухоадиабатический вертикальный градиент. Температурный градиент атмосферы может отличаться от сухоадиабатического в обе стороны и изменяться в широких пределах (до 20 °С/100 м) [7,8].

Одним из признаков инверсии является наличие нисходящих потоков воздуха, и, следовательно, его сжатие и нагревание, как, например, в антициклонах. Этому сопутствуют повышение давления и установление ясной погоды. Состояние атмосферы в этом случае характеризуется как очень устойчивое. В зонах атмосферных фронтов температурная инверсия может создаться в результате натекания теплого воздуха на нижерасположенный слой холодного. Другим типом инверсии являются радиационные инверсии, образующиеся ночью, после дневного прогрева земной поверхности. Ночью поверхность земли излучает тепло и быстро остывает. Одновременно остывает и прилегающий к ней слой воздуха – сверху он прикрывается более теплым инверсионным слоем. Радиационные инверсии создаются в том слое атмосферы, который содержит загрязнения, способствуя тому, что загрязняющие вещества не рассеиваются и надолго задерживаются в окружающем воздухе. Кроме того, они образуются как раз в то время, когда маловероятна очистка атмосферы осадками.

В качестве наиболее вероятных путей поступления фосфорорганических ТХ в атмосферу можно выделить: высокотемпературные выбросы в атмосферу, которые могут быть кратковременными или продолжительными (взрывы, пожары); вылив больших количеств вещества на различные поверхности с последующим испарением.

Масштабы последствий аварий зависят от размеров возникшего при авариях (разрушениях) и распространяющегося в атмосфере облака зараженного воздуха. Так, результаты моделирования последствий пожара с вовлечением ФОВ свидетельствуют о поднятии перегретой примеси за счет действия архимедовой силы на большую высоту со значительной скоростью ветра и развитой турбулентностью. Это приводит к относительно быстрому формированию зоны заражения на значительном удалении от источника.

Расчеты зон заражения для разных вариантов возможных аварий с ФОВ на объекте 1205 в п. Марадыковский по методике [9 - 12] дали величины максимальной глубины зон заражения (токсодоз ОВ, равных или выше пороговых) от 0,9 до 3,8 км при авариях на объекте по УХО и от 1,3 до 17,7 км при более серьезных авариях (разлив 20 тонн зомана) на объекте по хранению ХО.

Расчет по методике [13] при значительно меньших количествах пролитого ОВ (2 т по сравнению с 20 т в примере выше) глубина распространения поражающих концентраций зарина достигает 40 км для пороговых концентраций или ~ 7 км для выводящих из строя концентраций ОВ. Для случая разлива зомана получены глубины распространения более 43 км и около 2,8 км, при которых возможно получение пороговых и выводящих из строя доз соответственно. Расчетная площадь очага поражения в этих случаях будет составлять: 770 км2 или 22 км2 для зарина и 944 км2 или 4,1 км2 для зомана.

Размеры зон защитных мероприятий (ЗЗМ) утверждены Постановлениями Правительства РФ [14] и, в частности, для п. Марадыковский Кировской области площадь ЗЗМ составляет 891,7 км2.

Оценка возможного уровня токсического воздействия на население в случае реализации конкретного аварийного события осуществляется с использованием известных моделей распространения ОВ в различных природных средах [15-17]. В рамках этих моделей может быть проведен расчет размеров возможных зон для разных уровней вероятностей локального поражения. При прогнозировании последствий конкретной рассматриваемой аварийной ситуации в отличие от правил расчета локальных рисков не должны учитываться преимущественные направления ветров. Поскольку в момент аварии направление ветра может быть любым, а прогноз выполняется по наиболее тяжелым возможным последствиям, то и направление распространения зараженного первичного и вторичного облаков ОВ должны выбираться в сторону наиболее населенных территорий вблизи объекта. В качестве модельной аварии рассмотрим взрыв (например, установленной противотанковой мины) на складе, содержащем РБК-500, что привело к разрушению (пролому) крыши здания. При этой ситуации произошла детонация зарядов внутренних элементов в 100 изделиях РБК-500, в результате чего произошла разгерметизация корпусов РБК-500 и утечка из них 2370 кг вещества Vx в виде аэрозоля. Резкое увеличение давления внутри склада привело к выходу облака аэрозоля Vx через пролом в крыше склада в окружающую среду. Параметры модели взяты из работы [18]. В качестве условного направления распространения ОВ взято направление на северо-восток (юго-западный ветер), способное привести к наибольшему ущербу.

Расчетные оценки локального ущерба от чрезвычайной ситуации на объекте по УХО показывают, что при наиболее неблагоприятных метеоусловиях в зону смертельного поражения попадает целый ряд крупных населенных пунктов. В зависимости от направления ветра, это могут быть п. Мирный (расстояние 1-2 км, 5000 жителей), сёла Юрьево и Ленинская Искра Котельничского района (13 км), куст деревень вокруг с. Истобенск (8-16 км) и др. Зона, характеризующаяся высоким показателем локального ущерба (более 50%), при восточном ветре может достичь г. Котельнича, а при юго-западном ветре - г. Орлов (расстояние 24 км). В последнем случае при ингаляционном воздействии доля пораженного населения в кусте деревень в районе с. Истобенск будет достигать 100 % и свыше 50 % для г. Орлов.