Разделение урана и тория с помощью тонкослойных неорганических сорбентов
Рефераты >> Химия >> Разделение урана и тория с помощью тонкослойных неорганических сорбентов

Ее граф:

О = U = O · 2H2O (строение полимерное).

/ \

O - O

Осаждением пероксида часто пользуются при аффинаже соединений урана.

Все термически разлагающиеся соли урана при прокаливании на воздухе образуют так называемую "закись-окись" урана - U3О8 (имеет несколько модификаций).

По-видимому, это соединение не следует рассматривать как соединение оксидов, в которых уран проявляет различные степени окисления, UO2 · 2UOç, а полагать в нем уран, обладающим промежуточной (дробной) степенью окисления (+5,33), так как магнетохимические и структурные исследования показали, что все атомы урана в твердой фазе эквивалентны.

1.1.2 Торий

В водных растворах торий проявляет единственную устойчивую степень окисления +4. Известны важные в технологическом отношении растворимые соли тория: нитрат, хлорид, сульфат. К числу плохо растворимых солей относятся средние - карбонат, оксалат, фторид, фосфаты. В этом торий сходен с ураном (III, IV) и РЗЭ.

Средние - карбонат и оксалат - растворяются в избытке растворителя, образуя комплексные формы по аналогии с РЗЭ и ураном с n=3 и n=4. Гидроксид тория Th (OH) 4 плохо растворим, амфотерные свойства практически не проявляет. Ионы тория Th4+в водных растворах сильно гидратированы и гидролизованы. Образующиеся многоядерные гидроксокомплексы можно представить в общем виде:

Th [ (OH) 3Th] nn+4, (n = 1,2,3).

Комплексы этого типа цепеобразны. Аналогичные цепи найдены и в некоторых кристаллических структурах, например в Th (OH) 4.

Итак, химические свойства тория и урана достаточно различны для того, чтобы без больших затруднений выполнять их разделение и в аналитических (включая радиоаналитические), и в технологических задачах. По классификации Пирсона [5,6] и уран и торий относятся к "жестким кислотам", поэтому они образуют наиболее устойчивые комплексы с лигандами, у которых донорными атомами являются элементы подгруппы N, O или F ("жесткие основания"). Количественные данные о комплексообразовании (константы устойчивости) позволяют утверждать, что тенденция к образованию ацидокомплексов, как правило, убывает в ряду:

M4+ > M3+ > MO22+ > MO2+,

т.е. в порядке уменьшения ионного потенциала. Но ряд специфичности по отношению к оксалат - и ацетат-ионам может содержать инверсию:

M4+ > MO22+ > M3+ > MO2+,

Эти качественные представления помогают ориентироваться в химическом поведении U (IV) и U (VI). В дальнейшем следует помнить и о различии в ионных радиусах U4+ (0,97) и Th4+ (1,02 ), так как в понимании химического поведения этих элементов, являющихся "жесткими кислотами", ионный потенциал играет ключевую роль.

1.2 Многостадийные процессы

Концентрирование (или другие операции) может выполняться не за одну, а за несколько стадий, каждая из которых характеризуется своим значением степени извлечения. Например, в сорбционной технологии применяются последовательные операции сорбции - десорбции, но при этом и первоначальное извлечение компонента из раствора и его последующая десорбция (таких операций может быть несколько) характеризуются не стопроцентным переходом концентрируемого компонента (из раствора и из коллектора в новый раствор). Всегда бывают какие-то потери. В технологии допустимый уровень потерь диктует экономика, а в аналитике большую роль играет скорее хорошая воспроизводимость методики, чем полнота извлечения анализируемого компонента.

Таким образом, в случае многостадийного процесса (сорбция-десорбция и т.д.; экстракция-реэкстракция и т.д.) общее значение степени извлечения можно представить следующим образом:

N

Sобщ = П Si ,

i=1

где N - число стадий.

Сорбционное концентрирование компонента или компонентов в колоночном ("динамическом") варианте обычно осуществляется в две стадии. На первой стадии компонент из раствора, пропускаемого с определенной скоростью через сорбционную колонну (или в лабораторных масштабах - колонку), поглощается твердым веществом сорбента. Эту стадию характеризует так называемая "выходная кривая" (см. рис.1), которую обычно строят в координатах "концентрация компонента в вытекающем растворе" (ось ординат) и "пропущенный объем раствора" (ось абсцисс). Таким образом, после проведения всех анализов можно рассчитать степень извлечения компонента на стадии сорбции (S1):

Рис.1 Выходная кривая сорбции урана сорбентом ТГ-Ц из имитата морской воды. С0 = 10 мг/л

n n

S1 = 1 - ( å CiVi) / Co å Vi, ,

i=1 i=1

где Co и Ci - концентрации компонента в исходном растворе и в i-й фракции вытекающего раствора соответственно; Vi - объем i-той фракции.

На второй стадии промывают колонку десорбирующим раствором, который по мере его вытекания из колонки также пофракционно анализируют на содержание компонента. По результатам анализа строят выходную кривую (см. рис.2), имеющую другой вид, и вычисляют степень извлечения на этой стадии:

k n

S2 = ( å CjVj)/S1Co å Vi, ,

j=1 i=1

где Cj - концентрация компонента в j-й фракции элюата (вытекающего десорбента) объемом Vj.

Рис.2. Выходные кривые десорбции урана раствором соляной кислоты

0.1 моль/л. 1 - дифференциальная; 2 - интегральная.

Ход работы:

Исходный раствор - нитрат уранила с концентрацией по урану 1-3 г/л, содержащий 10 - 50 мкг/л тория, рН раствора - 2,5-3,0. Сорбент - гидроксид титана, нанесенный тонким слоем на поверхность клиноптилолита, марка ТГ-Кл [12]. Порядок выполнения работы следующий. Отбирают 2 пробы исходного раствора по 0.5 мл, сушат и измеряют на b - радиометре (I0). Через колонку, заполненную сорбентом, пропускают раствор нитрата уранила (50 мл) со скоростью 1 мл/мин·см2, отбирая фракции по 10 мл. Из каждой фракции отбирают 2 пробы по 0,5 мл, сушат и проводят b - метрию. По полученным результатам строят выходную кривую сорбции тория в координатах " П - V " и рассчитывают выход тория на стадии сорбции (В1).

Колонку промывают 10 мл дистиллированной воды и затем проводят десорбцию, пропуская 10 мл 1 моль/л раствора щавелевой кислоты, отбирая фракции по 2 мл. Из каждой фракции отбирают 2 пробы по 0,5 мл, сушат и проводят b - метрию. По полученным результатам строят выходную кривую десорбции тория в координатах "Д - V"

Практическая часть:

1. Проведем сорбцию и десорбцию тория, измерим скорость счета проб на β - радиометре. Так же отберем пробы исходного раствора. Данные измерений и расчетов занесем в таблицу № 1.

Таблица № 1

Сорбция

Десорбция

N

I1

I2

Iср

Iср-Iф

П

N

I1

I2

Iср

Iср-Iф

Д

Фон

27

23

25

-

-

-

-

-

-

-

-

1

36

36

36

11

0,08

1

2473

2490

2482

2457

0,664

2

30

30

30

5

0,04

2

203

198

201

176

0,047

3

36

32

34

9

0,07

3

70

75

73

48

0,013

4

40

36

38

13

0,10

4

52

51

52

27

0,007

5

40

42

41

16

0,12

5

53

54

54

29

0,008

Исх 1

178

165

161

136

-

-

-

-

-

-

-

Исх 2

152

148

-

-

-

-

-

-

-


Страница: