Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах
В [32, 34] представлен способ получения аморфных фосфатов алюминия осажденем из растворов азотнокислого алюминия и фосфорной кислоты аммиаком. Кроме того в [32] предложен способ получения гелеобразных фосфатов путем осаждения из раствора нитрата алюминия и фосфорной кислоты аммиаком с добавлением мочевины в качестве структурообразующего компонента.
Несомненным плюсом алюмофосфатов является их высокая термическая стабильность. По сравнению с алюмосиликатными молекулярными ситами, имеющими сравнительно низкий температурный предел устойчивости, в большинстве случаев 400-600°С [31], алюмофосфаты характеризуются высокой термической устойчивостью, и появление экзоэффектов, соответствующих перестройке их кристаллических структур наблюдается в области температур 900-980°С [30- 33].
Стоит заметить, что на алюмофосфатах диметиловый эфир можно получать как путем дегидратации метанола, так и путем прямого его синтеза из синтез-газа [34].
В связи с этим представляет интерес исследования каталитической активности алюмофосфатов в реакции дегидратации метанола.
На основании анализа литературного обзора можно сделать следующее заключение о том, что на протяжении уже нескольких лет интенсивно ведутся разработки процессов получения альтернативных топлив, взамен нефтяным. Это связано в первую очередь с тем, что запасы нефти с каждым годом истощаются и, кроме того, нефть является ценнейшим сырьем для нефтехимической промышленности, поэтому следует всячески снижать долю нефтепродуктов, используемых в качестве автомобильного топлива. Еще одной немаловажной причиной является экологическая ситуация, сложившаяся сегодня во многих крупных городах нашей планеты.
В настоящее время в различных странах мира проявляется значительный интерес к процессам производства диметилового эфира, который в 1995 году на Международном конгрессе и выставке в Детройте рядом крупных фирм (Amoco Co., Haldor Topsoe A/S и др.), представляющих специализацию по нефте- и газопереработке, по катализу, по двигателям и транспорту, был представлен как новое экологически чистое дизельное топливо 21 -го века.
Наиболее перспективными процессами получения ДМЭ являются газо- и жидкофазные синтезы на основе монооксида углерода и водорода. Метод получения ДМЭ дегидратацией метанола менее эффективен, однако если он происходит непосредственно в автомобильном двигателе, то решается ряд проблем с транспортировкой и хранением топлива. Недостатком является то, что данный процесс, проводимый при Т=250-300°С, атмосферном давлении и в присутствии катализатора - -оксида алюминия идет с невысокой производительностью по ДМЭ, что является проблемой для устройства такого двигателя. В связи с этим, нами предлагается процесс переработки метанола в диметиловый эфир на фосфатном катализаторе, на котором, из-за его большей активности, синтез протекает с большей скоростью, а, следовательно, при дальнейшем сжигании полученного топлива в цилиндрах двигателя выделяется больше тепловой энергии.
13. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
13.1. Методика проведения эксперимента
Эксперименты по дегидратации метанола с получением диметилового эфира проводили при атмосферном давлении на лабораторной установке, схема которой представлена на рисунке 4.
Перед началом экспериментов в кварцевый реактор (3), помещенный в каталитическую печь (6), через вентиль тонкой регулировки (13), моностат (14) и реометр (11) подавался аргон, расход которого, необходимый для нахождения количества газа, образовавшегося за время опыта, определяли по пенному расходомеру (15). Разогрев катализатора до 150-180°С проводили в токе аргона, дальнейший нагрев до реакционной температуры осуществляли в токе испаренного сырья.
Контроль температуры обогрева реактора осуществляется с помощью терморегулятора ТРМ1 (9) и реле РЭР-10М (12), с точностью + ГС. Контроль температуры в слое катализатора (5) осуществляется потенциометром ПП-63А (8) по хромель-копелевой термопаре.
При достижении температуры 150-180°С в верхнюю часть реактора (3), заполненную кварцевой насадкой (4), начинали подавать метанол из бюретки (1) с помощью перистальтического микродозатора (ДЛВ) (2). Жидкие продукты реакции на выходе из реактора охлаждались в водяном холодильнике-конденсаторе (10).
Сконденсировавшиеся продукты реакции и не прореагировавший метанол собирались в приемнике холодильника-конденсатора. Остальная часть жидких и газообразные продукты реакции проходили через низкотемпературную ловушку, охлаждаемую смесью льда и NaCl (до Т = -22°С). В ловушке конденсировались и собирались, в зависимости от используемого катализатора диметиловый эфир, метанол, метилформиат и вода, а газообразные продукты направлялись на продувку кранов-дозаторов хроматографов. Сброс газа осуществлялся в вытяжную вентиляцию.
Рис.4 Схема лабораторной установки
I бюретка; 2 микродозатор; 3 кварцевый реактор; 4 кварцевая насадка; 5 слой катализатора 6 электрообогрев реактора; 7 термопара 8 потенциометр ПП-63; 9 регулятор температуры ЭПВ-11 А; 10 холодильник-конденсатор; 11 реометр; 12 электрическое реле РЭР ЮМ; 13 вентиль тонкой регулировки; 14 моностат; 15 пенный расходомер; 16 низкотемпературная ловушка.
Газообразные и жидкие продукты анализировали методами ГЖХ и ГАХ на хроматографах ЛХМ-8МД. На основании информации о составе и количестве продуктов реакции, а также количестве пропущенного сырья, рассчитывали материальный баланс опыта, и выходные показатели процесса.
13.2. Методика анализа жидких продуктов
Методика рассчитана на хроматографическое определение диметилового эфира, метанола, метилформиата и воды в жидких продуктах реакции.
Для определения состава продуктов реакции использовался газовый хроматограф ЛХМ-8МД (модель 5) с детектором по теплопроводности. Газноситель -гелий. Колонка хроматографа, изготовленная из нержавеющей стали, длиной 2 м и диаметром 2 мм, заполнена сорбентом 10%масс. Tween-60/ПолихроМ".
Условия анализа продуктов:
Температура колонки 85°С;
Температура испарителя 125°С;
Расход газа-носителя 25мл/мин;
Ток моста катарометра 100мА;
Скорость ленты самописца 720м/ч.
Исследуемые пробы вводились в хроматограф с помощью микрошприца МШ 10 через головку испарителя. Иглу шприца вводили быстро и на всю длину. Объем пробы 1мкл.
Время удерживания компонентов:
Воздух 23 сек;
Диметиловый эфир 37 сек;
Метилформиат
Метанол 2 мин. 13 сек;
Вода 4мин.51 сек.
Для количественного определения состава жидких продуктов реакции использовался метод абсолютной калибровки с учетом поправочных коэффициентов.
Поправочный коэффициент определяли как тангенс угла наклона прямой, построенной в координатах: Si/SCT=F(Gi/GCT), где Si, Sct - площади пиков определяемого вещества и стандарта; Gi,Gct - их весовые соотношения. За стандарт принимался метанол. Поправочные коэффициенты: