Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060
Рефераты >> Химия >> Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060

3.2.5 Определение содержания водорастворимых веществ в пигментах

Содержание в пигментах водорастворимых веществ определяли методом горячей экстракции. Для получения горячего экстракта к навеске 2¸20 ± 0,01 г неорганического пигмента, помещенной в стакан емкостью 300 мл, приливают 200 мл дистиллированной воды, нагревают при перемешивании до кипения и кипятят в течение 5 мин. После быстрого охлаждения суспензию переносят в мерную колбу емкостью 250 мл, доливают водой до метки, тщательно перемешивают содержимое, отстаивают и фильтруют на воронке под вакуумом через беззольный фильтр.

Из водной вытяжки горячего экстракта отбирают пипеткой 100 мл, переносят в фарфоровую чашку и выпаривают досуха на водяной бане, остаток высушивают в термостате при 105 ± 2 0С до постоянной массы.

Содержание водорастворимых веществ вычисляют по формуле (3.4):

, % (3.4)

где - навеска испытуемого пигмента, г;

- масса остатка после высушивания, г.

3.2.6 Электрохимические испытания

При электрохимических испытаниях использовали двух электродную ячейку. Ее готовили наклеиванием на образец с покрытием полого стеклянного цилиндра. Рабочими электродами служили участок стали с покрытием, образующий дно стакана, и параллельно расположенная платиновая пластинка. Данная система рассматривалась как общий конденсатор с потерями, обкладкой которого служит стальная подложка и электролит, а диэлектрической прокладкой лакокрасочное покрытие. Для определения критического объемного содержания пигментов использовали разработанный на кафедре метод, основанный на проницаемости покрытий, отличающихся уровнем пигментирования, нанесенных на сталь. В качестве характеристики проницаемости использовали электрическую емкость системы окрашенная сталь-электролит. Определение критического уровня наполнения покрытия в этом методе основывается на фиксации содержания пигмента, отвечающего резкому повышению электрической емкости, которое обусловлено появлением пор в объеме лакокрасочной пленки (в результате превышения КОСП). Используя переменно-токовый метод исследования, определяли электрическую емкость (С) и тангенс угла диэлектрических потерь (tgd) при частоте 1 кГц на автоматическом мосте переменного тока Р 5016.

3.2.7 Хронопотенциометрические исследования

Антикоррозионные свойства лакокрасочных покрытий исследовали хронопотенциометрически. Параллельно проводили визуальную оценку состояния лакокрасочного покрытия и стальной подложки в процессе экспозиции окрашенных образцов в 0,5 М водном растворе NaCl.

С помощью патенциомера рН-340 получали зависимости неравновесного электродного потенциала стали от продолжительности коррозионных испытаний (хронопотенциометрические кривые).

4 Оборудование

Потенциостат рН-340

Потенциостат рН-340 предназначен для измерения потенциала с точностью ±2,5 и рН с точностью ±0,25.

Диапазон измерений:

- по потенциалу от – 1500 до + 1500;

- по рН от 0 до 14.

Мост переменного тока Р5016.

Мост переменного тока автоматический, с цифровым отсчетом Р5016

Предназначен для измерения параметров комплексных сопротивлений: емкости, индуктивности, сопротивления, тангенса угла диэлектрических потерь (tg д), тангенса угла сдвига (tgц).

Диапазон измерения моста:

- по емкости от 10-4 до 10-4ф;

- по тангенсу угла потерь (tg д) от 10-4 до 1.

Весы электронные ВЛ Э134.

Электронные весы используются для точных взвешиваний а исследовательских лабораториях. Они позволяют взвешивать с точностью до 0,005 г.

Диапазон измерения – от 0 до 500 г.

Шкаф сушильный тип 2В-131.

Мощность 500 Ватт. Максимальная температура нагрева 2000С.

Центрифуга Т-23

Центрифуга предназначена для отделения пигмента от маточного раствора.

Число оборотов 2000 – 8000 об/мин.

Магнитная мешалка ММ-5

Магнитная мешалка используется для проведения синтеза пигментов.

Мощность 3 Ватт. Частота 50 Гц.

Ракель спиральный для нанесения покрытий (Spiral Film Applicator) модель 358 ERICHSEN GmbH & Co. KG

5 Результаты эксперимента и их обсуждение

Растущее техногенное загрязнение окружающей среды значительно увеличивает объем и скорость коррозионных разрушений и повышает требования к противокоррозионной защите. С другой стороны коррозионные разрушения коммуникаций, технологического и емкостного оборудования является серьёзным источником загрязнения окружающей среды. Прогрессирующее использование в жизни человеческого общества новых экологических стандартов оказывает влияние на противокоррозионные технологии. Применение некоторых традиционных и хорошо себя зарекомендованных лакокрасочных покрытий ограничивается токсичностью технологий. Выпуск эффективных противокоррозионных лакокрасочных материалов, содержащих токсичные пигменты, органические растворители и отвердители будет снижаться, а взамен придут более экологичные материалы. Важными компонентами защитных лакокрасочных материалов грунтовочного типа являются противокоррозионные пигменты, наиболее эффективные из которых являются токсичными.

В связи с этим становится актуальной задачей поиск новых малотоксичных пигментов, имеющих хорошие защитные свойства.

Проводимые на кафедре «Химическая технология лаков, красок и лакокрасочных покрытий» исследования показали наличие хороших противокоррозионных свойств осажденного манганата (IV) кальция. Однако содержание водорастворимых веществ, превышающее допустимые значения, приводит к снижению барьерных свойств покрытий на его основе и, как следствие, к развитию подпленочной коррозии.

Одним из путей снижения содержания водорастворимых веществ является модификация манганaта(IV) кальция путем соосаждения с малорастворимыми соединениями. В качестве малорастворимой соли был выбран нетоксичный силикат натрия.

Первый этап работы заключался в модификации манганата (IV) кальция.

Осаждение проводили по следующей технологии:

Исходным сырьем служил Ca(NO3)2, восстановителем – NaNO2, окислителем – KMnO4, для соосаждения – Na2SiO3.

Уравнение реакции синтеза соосажденных манганат (IV) силикатов кальция (5.1):

2KMnO4 + 3NaNO2 + 2(1+n)Ca(NO3)2 + 2nNa2SiO3 + H2O =

2(CaMnO3∙nCaSiO3) + (4n+ 3)NaNO3 + 2HNO3 + 2KNO3 (5.1)

Методика синтеза:

Используя уравнение реакции синтеза, рассчитывали количество исходных компонентов и количество воды, необходимое для приготовления 20%-ных растворов на их основе. В химический стакан подходящей емкости сливали растворы нитрата кальция и перманганата калия, после чего помещали его на магнитную мешалку. С помощью капельной воронки, при включенном интенсивном перемешивании, приливали растворы нитрита натрия и силиката натрия. По ходу процесса происходило выпадение осадка и изменение окраски маточного раствора. Окончанием реакции служило полное обесцвечивание маточного раствора. Полученный продукт представлял собой осадок коричневого цвета. Отделив продукт от маточного раствора, тщательно его промывали и сушили до постоянной массы при температуре 1200С. В результате получили порошок коричневого цвета.


Страница: