Подготовка воды для производственных процессов. Изложение способов водоподготовки на предприятии
В гомогенных средах - газовой и жидкой - многие процессы идут по цепному механизму: окисление, полимеризация и пиролиз углеводородов, галогенирование углеводородов, синтез хлороводорода из элементов и др.
На скорость гомогенных процессов в газовой и жидкой фазах влияют концентрации реагирующих компонентов, давление, температура и перемешивание.
Влияние концентрации реагирующих веществ. На скорость химических реакций в общем случае влияние концентрации описывается уравнением:
u = kDc,
причем u может быть выражено через изменение массы продукта D в единице реакционного объема концентрации с или степени превращения х во времени, т.е.
или ,
где Dc определяется различно, в зависимости от порядка реакции и обратимости ее, а также от степени перемешивания.
Влияние давления. Повышение давления ускоряет газовые реакции аналогично повышению концентрации реагентов, так как с ростом давления увеличиваются концентрации компонентов. Следовательно, влияние давления увеличивается с возрастанием порядка реакции.
Всегда благоприятно применение давления для процессов, протекающих с уменьшением газового объема, так как, согласно принципу Ле Шателье, повышение давления вызывает увеличение выхода продукта.
Выход продукта газовой реакции синтеза увеличивается с повышением давления. Повышение давления уменьшает объем газовой смеси, в результате чего снижаются размеры аппаратов и сечения газопроводов.
Небольшое повышение давления мало влияет на скорость процессов в жидкой фазе, однако скорости многих реакций в жидкой среде сильно увеличиваются при весьма высоких давлениях. Так, при давлении в несколько сотен мегапаскалей скорость процессов полимеризации некоторых мономеров увеличивается в десятки раз. Установлено, что при нормальной температуре молекулы газов деформируются при давлениях выше 350-500 МПа, а молекулы органических жидкостей - выше 700 МПа. При давлениях, соответствующих деформации молекул, можно проводить такие синтезы, которые трудно или невозможно осуществить при обычных давлениях.
Влияние температуры. Повышение температуры вызывает ускорение гомогенных реакций в соответствии с уравнением Аррениуса.
При повышении температуры ускоряются и диффузионные процессы. Однако повышение температуры ограничивается условиями равновесия, возникновением побочных реакций и другими причинами. Для всех процессов стремятся установить наиболее рациональную температуру, при которой затраты на нагревание окупаются ускорением процессов.
Для обратимых реакций повышение температуры, увеличивая константу скорости химической реакции, одновременно влияет на равновесие. Выше указывалось, что для проведения обратимой экзотермической реакции (Р, Т) требуется определенная оптимальная температура, отвечающая максимальному выходу.
Влияние перемешивания. Перемешивание имеет наибольшее значение для жидкостных процессов, поскольку скорости диффузии в жидкостях в десятки и сотни тысяч раз меньше, чем в газах. Перемешивание растворов позволяет сильно увеличить общую скорость процесса за счет снятия диффузионных торможений. Перемешивание жидкости наиболее часто проводится в резервуарах с механическими или пневматическими мешалками.
Для газовых реакций перемешивание необходимо, во-первых, для начального смешения компонентов и, во-вторых, для выравнивания концентраций и температур в ходе процесса. Начальное смешение осуществляется при помощи разнообразных форсунок или сопл, через которые подводятся газы, с таким расчетом, чтобы оня смешались в общем турбулентном потоке.
3. Сравнение различных типов химических реакторов
Одним из факторов, используемых для сравнения и выбора реакторов, является влияние концентрации реагентов, точнее, движущей силы процесса на производительность реактора. При этом условно принимается постоянство других параметров технологического режима. Распределение концентрации реагентов в различных моделях реакторов приведено в таблице.
Реакторы идеального вытеснения и полного смешения. При прохождении реакционной смеси через реактор идеального вытеснения уменьшается концентрация исходных реагентов Са по высоте (длине) реактора и в соответствии с этим снижается движущая сила процесса, а при постоянстве других параметров — и скорость процесса.
Аналогичная картина наблюдается в реакторах периодического действия.
Таблица
Сравнение различных типов химических реакторов
Сравнение реакторов только по скорости процесса недостаточно. Следует еще учитывать, что постоянство температуры и концентрации реагентов по всему объему реактора смешения облегчает управление процессом, автоматизацию работы реактора. Иногда представляется возможным получение продукта одинакового качества с большим выходом. Например, для проведения ряда процессов полимеризации предпочтителен реактор полного смешения вследствие выравнивания концентрации. Ряд каталитических синтезов проходит с достаточной селективностью лишь в узком интервале температур, легко достижимом в изотермических реакциях полного перемешивания. Характерными примерами таких процессов могут служить синтезы метанола и высших спиртов, в которых повышение температуры на 10—20°С от оптимальной вызывает побочные реакции.
В реакторах смешения, как правило, эффективнее, чем при режиме вытеснения, протекают реакции с высокими концентрациями реагентов и при больших тепловых эффектах реакции. Интенсивное перемешивание улучшает условия теплопередачи; уменьшаются теплообменные поверхности для отвода (или подвода) теплоты, от реагирующей системы.
С другой стороны, перемешивание может вызвать нежелательное истирание твердых реагентов, эрозию аппаратуры, усиление уноса из реактора измельченных твердых частиц или капель жидкости. Энергетические затраты в реакторах смешения могут быть в несколько раз выше, чем при режиме вытеснения.
Таким образом, для выбора модели реактора необходимо сопоставить все положительные и отрицательные стороны предполагаемых типов реакторов и остановиться на такой модели, которая обеспечит, в конечном счете наиболее экономическое осуществление процесса.
Единичный реактор и каскад реакторов полного смешения. Сравнение распределения концентраций в единичном реакторе полного смешения и в каскаде, состоящем из реакторов смешения одинакового объема, приведено в таблице.
Движущая сила процесса DС в каскаде будет больше, чем в единичном реакторе. Разница в DС будет тем большей, чем большее число реакторов в каскаде. При бесконечно большом числе реакторов в каскаде DС каскада приближается к DС реактора идеального вытеснения.
Реакторы периодического и непрерывного действия. Реакторы периодического действия работают при нестационарном технологическом режиме. При этом независимо от степени перемешивания реагирующих масс изменяются во времени не только концентрации реагентов, но и температура, давление, а соответственно и константа скорости процесса. Если периодический реактор работает в режиме полного смешения, то время, необходимое для достижения заданной степени превращения, рассчитывается по характеристическому уравнению (см. табл.), которое совпадает с характеристическим уравнением реактора идеального вытеснения (см. табл.). Следовательно, если были бы возможны одинаковые условия проведения процесса в реакторах периодического действия и идеального вытеснения, то их объемы были бы равны между собой. Однако, условия протекания процессов в промышленных проточных реакторах, как правило, лучше, чем в периодических.