Подготовка воды для производственных процессов. Изложение способов водоподготовки на предприятии
Благодаря универсальным свойствам вода находит в народном хозяйстве разнообразное применение как сырье, в качестве химического реагента, как растворитель, тепло- и хладоноситель. Например, из воды получают водород различными способами, водяной пар в тепловой и атомной энергетике; вода служит реагентом в производстве минеральных кислот, щелочей и оснований, в производстве органических продуктов — спиртов, уксусного альдегида, фенола и других многочисленных реакциях гидратации и гидролиза. Воду широко применяют в промышленности как дешевый, доступный, неогнеопасный растворитель твердых, жидких и газообразных веществ (очистка газов, получение растворов и т.п.). Исключительно большую роль играет вода ,в текстильном производстве: при получении различных волокон - натуральных,- искусственных и синтетических, в процессах отделки и крашения пряжи, суровых тканей и др.
Как теплоноситель вода используется в различных системах теплообмена — в экзотермических и эндотермических процессах. Теплота фазового перехода Ж — Г воды значительно выше, чем для других веществ, вследствие чего конденсирующийся водяной пар является самым распространенным теплоносителем. Водяной пар и горячая вода имеют значительные преимущества перед другими теплоносителями — высокую теплоемкость, простоту регулирования температуры в зависимости от давления, высокую термическую стойкость и пр., вследствие чего являются уникальными теплоносителями при высоких температурах. Воду используют также как хладагент для отвода теплоты в экзотермических реакциях, для охлаждения атомных реакторов. В целях экономии расхода воды применяют так называемую оборотную воду, т.е. использованную и возвращенную в производственный цикл.
Промышленная водоподготовка представляет собой комплекс операций, обеспечивающих очистку воды — удаление из нее вредных примесей, находящихся в молекулярно-растворенном, коллоидном и взвешенном состоянии. Основные операции водоподготовки: очистка от взвешенных примесей отстаиванием и фильтрованием, умягчение, а в отдельных случаях — обессоливание, нейтрализация, дегазация и обеззараживание.
Отстаивание воды проводят в непрерывно действующих отстойных бетонированных резервуарах. Для достижения полного осветления и обесцвечивания декантируемую из отстойников воду подвергают коагуляции. Коагуляция — высокоэффективный процесс разделения гетерогенных систем, в частности выделения из воды коллоидно-дисперсных частиц глины, кварцевого песка, карбонатных и других пород, а также веществ органического происхождения, например белков. Суть процесса коагуляции сводится к введению в обрабатываемую воду коагулянтов, обычно различных электролитов. Ион-коагулянт, имеющий заряд, противоположный заряду коллоидной частицы, адсорбируется на поверхности. При этом нейтрализуется заряд частицы и сжимаются сольватные (гид-ратные) оболочки вокруг коллоидных частиц, которые могут объединяться друг с другом и седиментировать.
Часто, особенно когда в воде находятся не коллоидно-дисперсные вещества, а тонкодисперсные взвеси (т. е. более грубые по размерам частицы), которые, как правило, имеют очень слабый заряд, для водоподготовки используют процесс флокуляции. Вещества, вызывающие флокуляцию, называют флокулянтами. Флокулянты представляют собой растворимые в воде высокомолекулярные соединения (карбоксиметилцеллюлоза - КМЦ, полиакриламид - ПАА; полиоксиэтилен - ПОЭ; крахмал и др.). Они образуют мостиковые соединения между отдельными частицами дисперсной фазы, после чего эти тяжелые агрегаты седйментируют. Флокуляция происходит обычно очень быстро, а расход флокулянтов весьма незначительный; это делает рентабельным использование такого процесса, несмотря на достаточно высокую стоимость флокулянтов. Образующийся при коагуляции или флокуляции осадок удаляется из воды отстаиванием или фильтрованием.
Фильтрование - наиболее универсальный метод разделения неоднородных систем. В технике фильтрования наибольшее значение имеет развитая поверхность фильтрующего материала.
Умягчение и обессоливание воды состоит в удалении солей кальция, магния и других металлов. В промышленности применяют различные методы умягчения, сущность которых заключается в связывании ионов Са2+ и Mg2+ реагентами в нерастворимые и легко удаляемые соединения. По применяемым реагентам различают способы: известковый (гашеная известь), содовый (кальцинированная сода), натронный (гидроксид натрия) и фосфатный (тринатрийфосфат). Наиболее экономично применение комбинированного способа умягчения, обеспечивающего устранение временной и постоянной жесткости, а также связывание СО2, удаление ионов железа, коагулирование органических и других примесей. Одним из таких способов является известково-содовый в сочетании с фосфатным. Процесс умягчения основывается на следующих реакциях:
1. Обработка гашеной известью для устранения временной жесткости, удаления ионов железа и связывания СО2:
Са(НСОз)2 + Са(ОН)2 = 2СаСО3¯ + 2Н2О
Mg(НСО3)2 + 2Са(ОН)2 = 2СаСО3¯ + Mg (ОН)2¯ + 2Н2О
FeSO4 + Са (ОН)2 = Fe (OH)2¯ + CaSO4¯
4Fe (OH)2 + О2 + 2Н2О = 4Fe (ОН)3¯
СО2 + Са (ОН)2 = СаСО3¯ + Н2О
2. Обработка кальцинированной содой для устранения постоянной жесткости:
MgSO4 MgСО3¯ + Na2SO4
MgCl2 + Na2CO3 MgСО3¯ + NaCl
CaSO4 СаСО3¯ + Na2SO4
3. Обработка тринатрийфосфатом для более полного осаждения катионов Са2+ и Mg2+:
ЗСа (НСО3)2 + 2Na3PO4 = Са3 (РО4)2¯ + 6NaHCO3
3MgCl2 + 2Na3PO4 = Mg3 (РО4)¯ + 6NaCl
Растворимость фосфатов кальция и магния ничтожно мала; это обеспечивает высокую эффективность фосфатного метода.
Значительный экономический эффект дает сочетание химического метода умягчения с физико-химическим, т.е. ионообменным способом. Сущность ионообменного способа умягчения состоит в удалении из воды ионов кальция и магния при помощи, ионитов, способных обменивать свои ионы на ионы, содержащиеся в воде. Различают процессы катионного и анионного обмена; соответственно иониты называют катионитами и анионитами.
В основе катионного процесса умягчения лежит реакция обмена ионов натрия и водорода катионитов на ионы Са2+ и Mg2+. Обмен ионов натрия называется Na-катионированием, а ионов водорода— Н-катионированием:
Na2 [Кат] + Са (НСО3)2 « Са [Кат] + 2NaHCO3
Na2 [Кат] + MgSO4 « Mg [Кат] + Na2SO4
H2 [Кат] + MgCI2 « Mg [Кат] + 2HCI
Н [Кат] + NaCl « Na [Кат] + НС1
Приведенные реакции показывают, что ионообменный способ может обеспечить как умягчение воды, так и обессоливание, т. е. полное удаление солей из воды.
Реакции ионообмена обратимы, и для восстановления обменной способности ионитов проводят процесс регенерации. Регенерацию Na-катионитов осуществляют при помощи растворов поваренной соли, а Н-катионитов - введением растворов минеральных кислот. Уравнения регенерации катионитов:
Са [Кат] + 2NаС1 « Na2 [Кат] + СаС12