Обозначение констант равновесия межлигандного обмена хелатных комплексов экстрационно-фотометрическим методом
.
Таким образом, величина может быть положительна в случае, если: 1) (энтальпийный хелатный эффект); 2) (энтропийный хелатный эффект). На практике хелатный эффект обычно имеет как энтальпийную, так и энтропийную составляющие. Также необходимо иметь в виду, что образование связей между полидентатным лигандом и ионом металла почти всегда влечет за собой искажение углов связей в молекуле лиганда, т. е. сопряжено с дополнительными энергетическими затратами (особенно для лигандов жесткой структуры). Этот эффект, наоборот, препятствует образованию хелатного комплекса. Однако в случае пяти- и шестичленных циклов искажения структуры лигандов обычно минимальны. Таким образом, пяти- и шестичленный размер циклов является наиболее благоприятным и с точки зрения энтропийной, и энтальпийной составляющей комплексообразования [4].
1.2.3 Влияние центрального атома
При проведении аналитического разделения элементов или для более селективного их определения, как правило, используют несколько комплексообразующих реагентов одновременно. В первую очередь необходим реагент для собственно аналитической реакции, которая должна привести к изменению какого-либо аналитического свойства в системе (изменение окраски, появление осадка и т. д.), причем по возможности для одного катиона. Вспомогательные реагенты используют для предотвращения образования труднорастворимых соединений, для маскирования и т. д. Для маскирования обычно применяют групповые монодентатные неорганические комплексообразующие реагенты, такие, как , , . В принципе можно оценить степень разделения сравнением констант устойчивости всех комплексов, которые могут быть образованы в данной системе всеми присутствующими катионами со всеми добавленными хелатообразующими реагентами. Однако это не только утомительное и довольно смелое «предприятие», но часто практически нереальное из-за отсутствия всех необходимых данных. Поэтому целесообразно сразу же указать на возможность качественной оценки относительной устойчивости различных комплексов в зависимости от природы катиона. Катионы металлов по их способности к комплексообразованию можно разбить на определенные группы [1], для разделения и маскирования которых можно использовать групповые, или общие, реагенты.
1.3 Экстракция хелатов
Возможно, что первым сообщением об экстракции хелатов была работа, в которой ее автор в 1900 году экстрагировал хром раствором 1,5-дифенилкарбогидразида в бензоле [5]; после этого с каждым десятилетием экстракция внутрикомплексных соединений приобретает все больше и больше сфер своего применения.
На сегодняшний день имеется огромное число этих реагентов. Большинство из них хорошо экстрагируется неполярными органическими растворителями либо в виде незаряженных молекул (внутренних комплексных солей), либо в виде ионных ассоциатов, представляющих собой продукт ассоциации заряженного хелата с другими ионами. Хелатообразующие реагенты, как правило, неизбирательны, поэтому выбор условий экстракции имеет большое значение [2]. Так же они, как правило, малорастворимы в воде и хорошо растворимы в органических растворителях, что для экстракции имеет особое значение. Типичными экстракционными реагентами этого класса являются 8-оксихинолин, дитизон, ацетилацетон и др. Обычно они обладают свойствами слабой кислоты, поэтому кислотность раствора относится к числу наиболее важных факторов, определяющих полноту экстракции [6].
1.3.1 Межлигандный обмен в экстрактах комплексов металлов
Межлигандный обмен в экстрактах комплексов металлов для простейшего варианта с однозарядным лигандом можно представить равновесиями следующего типа:
MLn + nHL'ML'n + nHL (1.1)
mMLn + nM'L'mmML'n + nM'Lm, (1.2)
если поставщики лиганда – нейтральная форма реагента или соль металла, растворимая в экстракте комплекса. Примерами эффективного использования таких реакций с целью многократного снижения предела обнаружения металла могут служить реакции замены нехромогенного лиганда, используемого для экстракции и концентрирования металла, на хромогенный с последующим фотометрическим определением концентрации комплекса непосредственно в экстракте [7]. К сожалению, такие приемы не получили широкого распространения. Одна из основных причин малого использования таких реакций – отсутствие результатов системного их изучения в ряду металлов для наиболее эффективных реагентов, применяемых в концентрировании, групповом разделении и высокочувствительном экстракционно-фотометрическом определении металлов.
Редкий пример такого изучения описан в статях [8 – 9], в которых экспериментально была оценена степень протекания реакций межлигандного обмена диэтилдитиокарбамат – дитизонат в экстрактах всех металлов, с которыми дитизон образует экстрагируемые комплексы. В этих же работах предпринята попытка теоретического обоснования подхода к оценке констант межлигандного обмена в экстрактах комплексов металлов. Этот подход основан на том, что неизвестная константа равновесия обмена , в экстракте (индекс 0) пропорциональна отношению соответствующих констант экстракции комплексов, измеренных для равновесий в воде. Такое утверждение строгого доказательства не имеет. Поскольку в системе равновесий, определяющих в сумме реакцию обмена в неполярных растворителях:
,
MLnMn+ + nL-,
nL- + nH+nHL,
nHL' nH+ + nL'-,
Mn+ + nL'-ML'n,
MLn + nHL'ML'n + nHL,
измерять константы таких равновесий мы пока не можем, поэтому принято ставить в соответствие константу равновесия обмена в органической фазе , константам в водной фазе, K. В результате экспериментальной оценки констант равновесия обмена для реакций (1.1) и их сопоставление с соотношением констант экстракции проведенное в работе [9] имеет принципиальное значение для обоснования использования рядов сравнительной прочности комплексов в экстракте, построенным по константам образования и константам экстракции [10]. Следует отметить, что результаты сопоставления [9] измеренных констант обмена с соотношением констант экстракции в большинстве случаев подтверждают справедливость такого подхода к оценке степени протекания реакций типа (1.1).