О растворах
Для того, чтобы сместить равновесие в сторону кристаллизации надо понизить температуру, т.к. кристаллизация – это экзотермический процесс. Если растворить в жидкости какое-то вещество, концентрация ее уменьшится и в системе жидкость – твердая фаза усилится процесс плавления. Отсюда вытекает зависимость (IIзакон Рауля):
Повышение температуры кипения, а также понижение температуры кристаллизации разбавленных растворов прямо пропорционально моляльности раствора и не зависит от природы вещества.
где: и К – эбуллиоскопическая и криоскопическая константы (зависят от природы растворителя, не зависят от природы вещества и концентрации)
- моляльность раствора.
5. Слабые электролиты. Закон разбавления Оствальда
Диссоциация слабых растворов – обратимый процесс, к которому применим закон действия масс:
Константу равновесия процесса диссоциации называют константой диссоциации.
Если диссоциация слабого электролита протекает по ступеням, то каждая ступень диссоциации характеризуется своей константой:
1-я ступень:
2-я ступень:
При этом K1>K2, а Kсум = K1·K2
Константа диссоциации не зависит от концентрации и является строгой характеристикой электролита при данной температуре. Для слабых электролитов Kдисс < 104.
Рассмотрим процесс диссоциации электролита НА с концентрацией с и степенью диссоциации :
Согласно уравнению диссоциации:
Тогда
После подстановки полученных выражений в уравнение для константы диссоциации получим:
Так как <<1, то её величиной в знаменателе можно пренебречь:
или
Полученное соотношение является математическим выражением закона разбавления Оствальда: степень диссоциации электролита возрастает при разбавлении раствора.
6. Сильные электролиты. Активность
Ионная сила раствора.
Сильные электролиты в растворе практически полностью диссоциируют на ионы, т.е. истинное значение . Однако величина степени диссоциации, определяемая по физическим свойствам этих растворов (электропроводность, температура замерзания и т.д.) всегда меньше единицы. Кроме того, к растворам сильных электролитов неприменим закон действия масс в его обычной форме.
Наблюдаемые отклонения в свойствах растворов сильных электролитов связаны с сильным электростатическим взаимодействием ионов в растворе. Каждый ион окружён «ионной атмосферой» из ионов противоположного знака, которая влияет на его подвижность и вызывает отклонение свойств от ожидаемых величин.
Для характеристики растворов сильных электролитов вместо их истинной концентрации используют активность (), т.е. условную эффективную концентрацию в соответствии с которой они проявляют себя в химических и физических процессах.:
где – коэффициент активности;
с – истинная концентрация.
Коэффициенты активности определяется экспериментально и приводится в таблицах. Для разбавленных растворов электролитов не зависит от природы иона и может быть рассчитан по формуле:
где I – ионная сила раствора, которая определяется по формуле:
b (X) – моляльные концентрации ионов
z – заряды ионов.
Для предельно разбавленных растворов, в которых практически отсутствует взаимодействие между ионами, = с,и
7. Электролитическая диссоциация воды. Водородный показатель
Вода является слабым электролитом, который диссоциирует по уравнению: .
Это явление называется самоионизацией или автопротолизом.
Константа диссоциации воды при 250 С составляет:
Так как константа диссоциации воды очень мала, можно считать концентрацию воды постоянной величиной:
Тогда:
(при 295 К)
Величина Kw называется ионным произведением воды.
Ионное произведение воды характеризует равновесие между ионами водорода и гидроксид-ионами в водных растворах и является постоянной при данной температуре величиной.
Кислотность или основность водного раствора может быть выражена концентрацией ионов водорода или гидроксид-ионов. Чаще всего для этой цели используют величину рН, которая связана с концентрацией ионов водорода следующим соотношением:
В нейтральной среде:
; рН = 7
В кислой среде:
; рН < 7
В щелочной среде:
; рН > 7
Зная рН, легко рассчитать рОН, и наоборот, т.к.: рН + рОН = 14.
Расчёт рН и рОН растворов сильных и слабых электролитов.
Концентрацию ионов Н+ определяют по уравнению Оствальда: [H+]=; аналогично для гидроксила: [ОH–]=;