Неорганическая химия
Поэтому при постоянной температуре с повышением концентрации СО2 в газовой фазе и в растворе должна возрастать и концентрация Ca(HCO3)2 отвечающая равновесию раствора с твердым СаСО3. Это увеличение количества Ca(HCO3)2 происходит за счет уменьшения количества СаСО3. таким образом, повышение концентрации СО2 в растворе вызывает переход соответствующего количества карбоната кальция в гидрокарбонат, что сопровождается понижением концентрации СО2 до равновесной. Поэтому СО2, избыточная по отношению к равновесной, носит название агрессивной двуокиси углерода. Если такая повышенная концентрация СО2 в воде поддерживается за счет поступления из вне, то вода становится агрессивной по отношению к карбонату кальция.
В противоположном случае при понижении давления СО2 над раствором, гидрокарбонат кальция разлагается с выделением в осадок СаСО3. В природных условиях процесс происходит когда глубинные воды, насыщенные двуокисью углерода под давлением, выходят на поверхность.
При повышении температуры равновесие реакции смещается влево. При кипячении водного раствора, содержащего гидрокарбонат, разлагается с образованием осадка СаСО3.
Важным техническим продуктом является карбид кальция СаС2. Карбид получают из извести и угля в мощных электрических печах при 1900-1980°С на основе реакции
СаО + 3С = СаС2 + СО – 111ккал
Процесс сопровождается поглощением значительного количества теплоты. Химически чистый карбид представляет собой бесцветные кристаллы; технический продукт в зависимости от количества и характера примесей имеет окраску от светло-серого до черной. В числе примесей часто содержатся вредные и опасные сульфиды, фосфиды кальция и других металлов. Карбид кальция служит исходным веществом для получения ацетилена по реакции
СаС2 + 2Н2О = Са(ОН)2 + С2Н2
Примеси сульфидов арсенидов и фосфидов кальция при взаимодействии с водой образуют H2S, AsH3, PH3, присутствие которых в ацетилене нежелательно из-за их ядовитости резкого запаха и склонности к самовоспламенению (PH3). Чистый ацетилен запаха не имеет. Карбид кальция в больших количествах расходуется на получение ацетилена, который применяется для резки и сварки металлов и в качестве исходного материала для промышленного синтеза.
Контрольные вопросы
1. Почему щелочные металлы неустойчивы на воздухе и в водных растворах?
2. Напишите электронные формулы Na, Ba2+.
3. Изобразите схематически структуру пероксида натрия.
4. Как изменяются радиусы и потенциалы ионизации атомов щелочных металлов с ростом порядкового номера элементов? Дать объяснение наблюдающимся закономерностям на основе электронного строения атомов.
5. Чем объяснить различную последовательность расположения щелочных металлов в ряду напряжений и периодической системе?
6. Можно ли получить щелочные металлы электролизом? Ответ поясните. Приведите примеры уравнений электродных реакций получения щелочного металла.
7. Почему щелочноземельные металлы неустойчивы на воздухе, а бериллий и магний достаточно устойчивы?
8. В чем отличие оксидов бериллия и оксидов других элементов II группы главной подгруппы? Как изменяются восстановительные свойства элементов II группы главной подгруппы по мере возрастания порядкового номера элемента и почему?
9. Как и почему изменяются основные свойства в ряду LiOH-CsOH?
10. Написать уравнения реакций получения карбоната натрия: а) силиката натрия; б) ацетата натрия; в) нитрата натрия; г) гидросульфата натрия; д) сульфита натрия.
11. Закончить уравнения реакций:
12. а) Na2O2 + KI + H2SO4 ® б) Li3N + H2O ® в) К + O2(избыток) ® г) KNO3 нагревание®
1.3 р-элементы – металлы
Алюминий
Алюминий - основной представитель металлов главной подгруппы III группы периодической системы химических элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп 27А1. Свойства аналогов алюминия-галлия, индия и таллия во многом напоминают свойства алюминия. Этому причина - одинаковое строение внешнего электронного слоя элементов s2p1, вследствие которого все они проявляют степень окисления +3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента-алюминия и его соединений.
Алюминий - серебристо-белый легкий металл, р - 2,699 г/см3, Тпл. = 660,24 °С, Ткип. = 2500 °С. Он очень пластичен, легко прокатывается в фольгу и протягивается в проволоку. Прекрасный проводник электрического тока - его электрическая проводимость сравнима с электрической проводимостью меди. Поверхность металла всегда покрыта очень тонкой и очень плотной пленкой оксида А12О3. Эта пленка оптически прозрачна и сохраняет отражающую способность металла (блеск).
Алюминий весьма активен, если нет защитной пленки А12О3, инертного в химическом отношении вещества. По положению в электрохимическом ряду напряжений металлов алюминий стоит левее железа, однако пленка оксида алюминия практически останавливает дальнейшее окисление металла и препятствует его взаимодействию с водой и некоторыми кислотами. Если удалить защитную пленку химическим способом (например, раствором щелочи), то металл начинает энергично взаимодействовать с водой с выделением водорода:
2А1 + 6Н2О = 2А1(ОН)3 + ЗН2↑
Порошкообразный алюминий сгорает на воздухе с ослепительной вспышкой. Алюминий непосредственно реагирует с галогенами, образуя галогениды:
2А1 + ЗС12 = 2А1С13
При сильном нагревании он взаимодействует с серой, углеродом и азотом с образованием сульфида A12S3, карбида А14С3 и нитрида A1N. Эти соединения легко гидролизуются с выделением соответственно сероводорода, метана, аммиака и гидроксида алюминия.
Алюминий легко растворяется в соляной кислоте любой концентрации:
2А1 + 6НС1 = 2А1С13 + ЗС12
Концентрированные серная и азотная кислоты на холоде не действуют на алюминий. При нагревании реакция протекает с восстановлением серной кислоты до оксида серы (IV) и азотной кислоты до низших оксидов азота без выделения водорода. Причем образуются соответственно сульфат А12(SO)3 и нитрат А1(NO3)3. В разбавленной серной кислоте при небольшом нагревании алюминий растворяется с выделением водорода:
2А1 + 3H2SO4 = Al2 (SO4)3 + ЗН2
В разбавленной азотной кислоте реакция идет с выделением оксида азота (II):
А1 + 4HNO3 = A1(NO3)3 + NO + 2Н2О
Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием алюминатов:
2NaOH + 2AI + 6Н2О = 2Na[Al(OH)4] + 3H2
Эти соединения можно рассматривать как соли очень слабых кислот. Гидроксид алюминия амфотерен (от греч. "амфотерос" - и тот, и другой). Он способен взаимодействовать как с кислотами, так и со щелочами (кроме раствора гидроксида аммония). Амфотерность- свойство гидроксида совмещать черты слабого основания и слабой кислоты - присуща гидроксидам р- и (d-металлов и особенно ярко выражена у гидроксида алюминия. Следствием этого является сильный гидролиз солей алюминия, имеющих в растворе кислую реакцию: