Момент импульса и его свойства
. (4.108)
Таблица 4.5. Уровни жесткого ротатора
l |
Символ уровня |
Энергия Е, |
Вырождение g=2l+1 |
0 |
S |
0 |
1 |
1 |
P |
2 |
3 |
2 |
D |
6 |
5 |
3 |
F |
12 |
7 |
4 |
G |
20 |
9 |
Рис. 4.5. Энергетическая диаграмма жесткого ротатора.
Для жесткого ротатора, например, двухатомной молекулы, разрешены спектральные переходы между соседними уровнями . Поэтому, согласно уравнению 4.108, ее спектр представляет собой набор линий, отстоящих друг от друга на примерно одинаковую величину, равную в энергетической шкале, или 2В в шкале волновых чисел . Поскольку вращательная постоянная связана с моментом инерции, изучение вращательных спектров молекул даёт возможность экспериментального определения момента инерции молекул и, следовательно, межатомных расстояний.
4.3.8. Волновые функции жёсткого ротатора
4.3.8.1. Использование операторов сдвигов состояний позволяет также максимально просто найти собственные функций операторов и без каких-либо специальных сведений о дифференциальных уравнениях. Авторы сознательно построили настоящий раздел в расчёте на внимательного читателя-химика, владеющего лишь минимальными, но достаточно прочными навыками в области тригонометрии и математического анализа.
4.3.8.2. Прежде всего выпишем операторы повышения и понижения в сферических координатах, используя формулы (4.53) и (4.54):
(4.109)
В силу того, что собственные функции, получающиеся в результате действия операторов сдвига, подлежат нормировке, как это уже обсуждалось в разделе 4.3.5.10., мы имеем все основания определить эти операторы с точностью до постоянного множителя, т.е. вместо (4.109) ограничимся выражением
(4.110)
4.3.8.3. Исходные уравнения для вывода всей цепочки волновых функций – уравнения аннигиляции
(4.111)
На основании формул (4.50) и (3.28) функцию можно представить в виде
(4.112)
С учётом этого уравнение (4.111) в сферических координатах: запишется в форме
.(4.113)
Совершим очень несложные преобразования, приводя к дифференциальному уравнению для функции:
откуда следует (4.114)
4.3.8.4. Разделяя переменные, получаем
(4.115)
Учтём что ,
(4.116)
Интегрирование уравнения (4.116) даёт
(4.117)
где– постоянная интегрирования, определяемая из условия нормировки. Окончательно получаем формулу для функции
(4.118)
4.3.8.5.Формула (4.118) дает лишь предельные выражения волновых функций , отвечающие максимальному и минимальному значениям квантового числа m, а именно и , или что то же самое . Все волновые функции, соответствующие промежуточным значениям очень просто получаются последовательным действием операторов с точностью до нормировочных множителей, которые могут быть рассчитаны в каждом конкретном случае
4.3.8.6.Отметим, что мы не ставим перед собой и перед читателем задачу вывода общей формулы сферических волновых функций. Это связано, с одной стороны, с тем, что она обязательно покажется слишком перегруженной индексами и коэффициентами, к которым удобнее привыкать постепенно. С другой стороны, для практических целей редко требуются функции с большими значениями квантового числа l. В химическом обиходе встречается состояния с l= 0, 1, 2, 3, поэтому ограничимся этими значениями, (их символы см. в табл. 4.5 ).
4.3.8.7. Итак, нас будут интересовать s–, p–, d–, f– орбитали жесткого ротатора. Запишем соответствующие исходные функции и , с точностью до постоянного множителя:
для s-состояния и
для p- состояния и
для d- состояния и