Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов
Рефераты >> Химия >> Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов

Актуальность темы диссертации. К группе низкотемпературных твердых электролитов можно отнести вещества на основе галогенидов меди и серебра, обладающие при комнатной температуре ионной проводимостью по Си+ и Ag+, сравнимой с проводимостью жидких электролитов. Кристаллическая структура, механизм проводимости низкотемпературных твердых электролитов и поведение электродов в контакте с ними имеют много общего, что позволяет рассматривать электрохимические системы на основе этих электролитов и кинетику электродных процессов в них с единой точки зрения.

Фундаментальными отличиями низкотемпературных твердых электролитов от жидких являются:

• Униполярность, т.е. перенос заряда в них осуществляется в основном одним сортом ионов (основные носители заряда), а перенос остальных ионов (неосновные носители) осуществляется по точечным дефектам кристаллической решетки.

• Низкотемпературные электролиты являются примесными полупроводниками. Следовательно, электроперенос в электрохимических преобразователях энергии определяется поведением не только ионной, но и электронной подсистем и их взаимодействием.

На сегодня опубликовано достаточно большое количество работ по выяснению механизма и кинетики электрохимических процессов в низкотемпературных электролитах. Однако эти работы в основном касаются исследования участия основных носителей в электродных реакциях, неосновных носителей в процессах заряжения и адсорбции на электродах и переноса электронных дефектов (свободных электронов и дырок) в объеме электролита.

В то же время практически нет работ по исследованию кинетики процессов генерации – рекомбинации электронных дефектов на межфазных границах и участия этих дефектов в образовании электродных потенциалов. Эти вопросы имеют тесную взаимосвязь с проблемами прикладного плана. Например, при разработке ионисторов на основе низкотемпературных электролитов одной из основных является поблема отличного от нуля потенциала индифферентного электрода, снижающего интервал рабочих напряжений ионистора. Очень важным является выяснение причин неудовлетворительной работоспособности медного электрода, что вынуждает искать альтернативные электродные материалы.

Поэтому результаты настоящей работы актуальны не только с чисто научной точки зрения в плане развития представлений о механизме и кинетике реакций в низкотемпературных твердых электролитах, но и для разработчиков электрохимических преобразователей энергии на базе этих электролитов.

Цели и задачи исследований

Главной целью данной работы является анализ путей образования электронных дефектов в низкотемпературных электролитах, исследование участия этих дефектов в возникновении электродных потенциалов и электродных процессах, а также обоснование обобщенного подхода к механизму и кинетике электродных реакций в электронной и ионной подсистемах с учетом состояния приэлектродных зон в этих электролитах.

Поставленная цель достигается решением следующих задач:

• Проведение анализа путей образования электронных дефектов в электролитах и оценка их концентрации;

• Оценка величины электронной проводимости медьпроводящих электролитов;

• Исследование кинетики электрохимического разложения электролита CU4R.DCI3I2;

• Установление закономерностей электродных реакций на индифферентном электроде в электролите СиД;

• Исследование кинетики электрохимического осаждения – растворения металла на обратимых металлических электродах;

• Установление закономерностей анодного растворения амальгамы серебра в электролит Ag4RbT5;

• Проведение компьютерного моделирования процесса электрохимического растворения распределенного металлического электрода;

• Разработка методики выращивания из растворов монокристаллов медьпроводящих твердых электролитов.

Место выполнения работы и ее связь с научными программами и темами. Диссертационная работа выполнялась в Ульяновском отделении Института радиотехники и электроники РАН и Саратовском государственном техническом университете.

Работы, результаты которых включены в диссертационную работу, выполнялись в соответствии с Постановлением ЦК КПСС и СМ СССР №55–25 от 17.01.72 г., Постановлениями СМ РСФСР №630 от 28.11.75 г.и №610 от 12.11.76 г., Координационными планами научного совета АН СССР «Электрохимия, электрохимические источники тока» и «Физическая химия ионных расплавов и твердых электролитов», а также на хоздоговорной основе с Институтом высокотемпературной электрохимии Уральского отделения АН СССР, Институтом кристаллографии АН СССР, НПО «Квант» (г. Москва), НИИ химических источников тока (г. Саратов).

Научная новизна и значимость полученных результатов

Рассчитана концентрация электронных дефектов (дырок или Си24) в медьпроводящих электролитах с использованием величины потенциала индифферентного электрода [8,10]. Величина концентрации Си2+ в электролите обуславливает величину его электронной проводимости, которая является основным критерием при оценке возможности использования электролита в электрохимических устройствах.

Выявлены лимитирующие стадии процесса электрохимического разложения электролита СцД и оценена толщина слоя продуктов реакции разложения на поверхности электрода [15,19,23]. Кинетика этого процесса имеет большое значение при организации химического источника тока путем разложения электролита, приводящего к выделению меди на одном токоподаодеиода.

Количественно исследована кинетика электрохимической генерации – рекомбинации электронных дефектов на индифферентном электроде при малых отклонениях потенциала от стационарного значения. Определены величины основных кинетических параметров реакции: сопротивления переноса заряда, коэффициента диффузии этих дефектов [11,13,20].

Исследована кинетика электрохимического осаждения меди на индифферентном электроде. Выявлена лимитирующая стадия электродного процесса [11]. Исследования имеют значение при разработке кулонометров, таймеров и других функциональных элементов на базе низкотемпературных твердых электролитов, в которых один из электродов, как правило, является индифферентным.

Выяснено, что при малых отклонениях от равновесного потенциала медный электрод ведет себя как индифферентный и на его поверхности протекает реакция с участием электронных дефектов.

Определено, что при потенциалах более 10 мВ на медном электроде деблокируется реакция осаждения – растворения меди вследствие разрушения слоя оксидов. Исследована кинетика этой электродной реакции при потенциалах, далеких от равновесного [1,59]. Выявлены лимитирующие стадии и оценены величины скорости роста игл и дендритов на поверхности меди и скорость роста толщины электрода в целом в зависимости от потенциала. Получена величина плотности тока обмена.

Предложена методика расчета величины дырочной проводимости электролитов, содержащих примесь потенциалопределяющих электронных дефектов, из величины предельного катодного тока на блокирующем электроде [1,58].

Оценена величина дырочной проводимости при термодинамическом равновесии ячейки. Данная методика упрощает процесс оценки величины дырочной проводимости и позволяет устранить искажения за счет частичного разложения электролита.


Страница: