Комплексные соединения в аналитической химии
([Сu(NН3)4]2+ 4Н+ à Сu2+ + [NН4]+)
- более прочного связывания комплексообразователя с новым лигандом, т. е. реакции обмена лигандами во внутренней сфере:
[Pt(NH3)4Cl2] + 4КСN à К2[Рt(СN)4] + 4NН3 + 2КСl
([Pt(NH3)4Cl2]+ 4СN- à [Рt(СN)4]2-+ 4NH3)
Замена лигандов во внутренней сфере комплексного соединения протекает ступенчато, причем при наличии различных лигандов вначале замещается тот лиганд, связь которого с комплексообразователем лабильна:
[Рt(NН3)2С12] + КI à [Рt(NН3)2ClI] + КС1
([Рt(NН3)2С12] + I- à [Рt(NН3)2СlI] + Сl-)
Рассмотренные реакции трансформации комплексных соединений всегда протекают в сторону образования более устойчивых комплексных соединений, у которых константа нестойкости внутренней сферы меньше, чем у исходных соединений.
Б. Разрушение гидроксокомплексов в кислой среде из-за образования малодиссоциированного соединения
Nа2[Zn(ОН)4] + 4НС1 à 2NaCl + ZnCl2 + 4Н2O
([Zn(ОН)4]- + 4Н+ à Zn2+ + 4Н20)
В. Разрушение комплексного соединения с образованием малорастворимого соединения, в котором комплексообразователь или лиганд связан прочнее, чем в комплексе:
[Ag(NH3)2]Cl + KI àAgI + 2КСl + 2NН3
([Ag(NH3)2]+ + I- à AgI + 2NH3)
Г. Разрушение или трансформация комплексного соединения в результате окислительно-восстановительных превращений:
- лиганда:
K2[CdI4] + Cl2 à 2КСl + СdС12 + 2I2
([CdI4]2- + Cl2 à Сd2+ + 2I2 + 4Сl-)
- комплексообразователя:
2К4[Fе(СN)6] + С12 à 2К3[Fе(СN)6] + 2КС1
(2[Fе (СN)6]4- + С12 à 2[Fе(СN)6] + 2Сl- )
Процесс комплексообразования сильно влияет на величины восстановительных потенциалов катионов d-металлов. Если восстановленная форма катиона металла образует с данным лигандом более устойчивый комплекс, чем его окисленная форма, то потенциал возрастает. Снижение потенциала происходит, когда более устойчивый комплекс образует окисленная форма. Иллюстрацией сказанному являются следующие данные.
Fe3+ + e- ßà Fe2+
φ0’ = 0,35 B
Эти особенности окислительно-восстановительных свойств ионов "металлов жизни" в биокомплексах очень важны для понимания биохимических процессов, протекающих при их участии.
3.4 Кислотно-основные свойства комплексных соединений
Комплексные соединения могут проявлять кислотно-основные свойства за счет ионов Н+ и ОН~ внешней сферы:
кислоты: H2[SiF6] à 2Н+ + [SiF6]2-
основания: [Аg(NН3)2]ОН à [Аg(NН3)2]+ + ОН-
и, кроме того, за счет диссоциации их лигандов. Последнее особенно характерно для природных комплексов, содержащих белки, которые, как известно, являются амфолитами. Например, гемоглобин (ННb) или оксигемоглобин (ННbО2) проявляют кислотные свойства за счет кислотных групп белка глобина, являющегося лигандом:
ННb à Н+ + Hb- ННЬО2 ßà Н+ + HbO2
В то же время анион гемоглобина за счет аминогрупп белка глобина проявляет основные свойства и поэтому связывает кислотный оксид С02 с образованием аниона карбаминогемоглобина (НbСО2)- :
СО2 + Hb- à (НbCО2)-
С помощью этого соединения СО2 транспортируется из тканей в легкие, где, вступая в реакцию с более сильной кислотой оксигемоглобином, превращается в слабую нестойкую кислоту ННbСО2, распадающуюся на гемоглобин с выделением СО2.
(НbСО2)- + ННbО2 ßà НbО2- + ННb + СО2
Кислотно-основные свойства лигандов, связанных с комплексообразователем, часто выражены более ярко, чем кислотно-основные свойства свободных лигандов.
4. Комплексные соединения в аналитической химии
4.1 Качественный анализ катионов
Первая группа катионов
В первую аналитическую группу катионов входят ионов калия K+, натрия Na+, аммония NH4+ и магния Mg2+. В отличии от катионов других групп большинство солей калия, натрия, аммония, легко растворимы в воде. Ион Mg2+ свойствам несколько отличается от других катионов этой группы. Он образует труднорастворимые в воде гидрат окиси, фосфорнокислую и углекислую соли. Поскольку нерастворимость в воде углекислых солей – важнейший аналитический признак катионов второй группы, то Mg2+ иногда относят к ней. Но углекислый магний хорошо растворим в аммонийных солях. А так как отделение катионов второй группы от катионов первой группы растворим (NH4)2CO3 проводят присутствии NH4Cl, то в ходе анализа Mg2+ оказывается не в осадке со второй группой, а в растворе с первой группой.
Реакции катионов калия
Реакция с кобальтинитритом натрия Na3[Co(NO2)6].
Кобальтинитрит натрия в нейтральном или уксусном растворе дает с ионами калия желтый кристаллический осадок кобальтинитрита калия-натрия:
2KCl + Na3[Co(NO2)6] = K2Na[Co(NO2)6] + 2NaCl
или в ионном виде:
гибридизация атомный кислотный диссоциация титрование
2K+ +Na+ + [Co(NO2)6]3- = K2Na[Co(NO2)6]
Ион NH4+ дает аналогичный осадок.
Выполнение.
Реакция можно выполнить не капельной пластинке и в пробирке. К 3—4 каплям раствора KCl или KNO3 прибавили 2—3 капли раствора реактива. В щелочной среде реакция проводить нельзя, так как от щелочи реактив разлагается, образуя гидрат окиси кобальта:
Na3[Co(NO2)6] + 3NaOH = Co(OH)3 + 6NaNO2
Рассматриваемая реакция на ион K+ более чувствительна, чем с гидротартратом натрия. Поэтому именно ею и пользуются для осаждения иона K+ из сыворотки при перманганатометрическом определении калия в крови.
Реакции катионов аммония
Реакция с реактивом Несслера
(щелочной раствор ртутноиодистого калия K2[HgI4]).
Этот реактив дает с аммонийными солями красновато-коричневый осадок состава [NH2Hg2O]I (его структурная формула HO – Hg –NH – I ):
NH4Cl + 2 K2[HgI4] + 4KOH = [NH2Hg2O]I + 7KI + KCl + 3H2O
или в ионном виде:
NH4+ + 2[HgI4]- + 4OH- = [NH2Hg2O]I + 7I- + 3H2O
При очень малых количествах солей аммония вместо осадка получает желтый раствор. Реакция очень чувствительна. Она применяется в биохимическом анализе для определения общего азота в крови, мочевины, в санитарно-гигиенических лабораториях – при анализе воды, воздуха, пищевых продуктов (в частности мяса) и т.д.
Выполнение.
А. К 1—2 каплям разбавленного раствора аммонийной соли на капельной пластинке прибавить 3—4 капли реактив Несслера выпадение красновато-коричневого осадка. Реактив Несслера прибавлять в избытке, так как осадок растворим в большом количестве аммонийных солей.
Вторая группа катионов
Ко второй аналитической группе катионов относятся ионы Ba2+, Ca2+, Sr2+.
Кальций, стронций, барий называются щелочноземельными металлами. По своей активности они лишь немного уступают щелочным металлам. Образуемые ими гидраты окислов являются сильными основаниями; их растворимость растёт с увеличением порядкового номера металла.
Щелочноземельные металлы образуют большое количество солей; из них растворимы галоидные, азотнокислые, уксуснокислые и кислые углекислые. Групповой реактив этой группы катионов – углекислый аммоний (NH4)2CO3, образующий с ионами Ba2+ и Ca2+ не растворимые в воде средние соли BaCO3 и CaCO3.