Коллоидная химия и поверхностные явления
(рис.1, 2)
8. На рисунке справа изображена изотерма адсорбции поверхностно-активного вещества на границе раствор-пар, Г – число молей поверхностно-активного вещества в поверхностном слое, Г0 – максимально возможная концентрация поверхностно-активного вещества в поверхностном слое, на рисунке слева изображены изотермы поверхностного натяжения ПАВ (1, 2) и поверхностно-инактивного вещества/
Поверхностно-активные вещества. Правило Дюкло-Траубе
Поверхностно-активные вещества ПАВ – это вещества, способные концентрироваться на поверхности раздела фаз и понижать поверхностное натяжение жидкости. Направление процесса (концентрирования вещества в поверхностном слое фазы или выход его оттуда) определяется знаком dу/dc. Если c~a, то значению >0 соответствует отрицательная адсорбция, dу/dc<0 – положительная адсорбция. Поверхностная активность
G = - dу/dc (10)
при с→0 – адсорбция поверхностно-активных веществ положительна, адсорбция жидкостей – адсорбатов, имеющих большее поверхностное натяжение, чем у адсорбента, отрицательна.
Большинство поверхностно-активных веществ, меняющих поверхностное натяжение воды, имеет общую структуру: в молекуле содержатся гидрофильная головка и гидрофобный хвост.
(рис.3)
При взаимодействии с водой гидрофильная головка оказывается сильно гидратированной, а гидрофобный хвост выталкивается наружу. Образуется мономолекулярный слой поверхностно-активного вещества на поверхности воды.
(рис.4)
Правило Дюкло-Траубе: при увеличении числа углеродных атомов в гомологическом ряду в арифметической прогрессии поверхностная активность вещества возрастает в геометрической прогрессии.
Адсорбция на твёрдой поверхности
Мономолекулярная адсорбция на твёрдой поверхности
Уравнение изотермы Ленгмюра
Основные положения теории Ленгмюра:
1. Адсорбция – процесс локализованный, она вызвана силами, близкими к химическим
2. Адсорбция протекает не на всей поверхности адсорбента, а в активных центрах
3. Каждый активный центр взаимодействует с одной молекулой адсорбата, в результате чего на поверхности адсорбента образуется один слой адсорбированных молекул
4. Адсорбция – процесс обратимый и равновесный
При адсорбционном равновесии скорость адсорбции равна скорости десорбции, она пропорциональна числу ударов молекул адсробтива о поверхность адсорбента, незанятую адсорбированными молекулами. Она равна
Wa = ka(1 – и)p (11)
ka – коэффициент пропорциональности, и – доля поверхности, покрытой адсорбированными молекулами, (1 – и) – доля свободной для адсорбции поверхности адсорбента.
Скорость десорбции:
Wд = kдни (11)
kд – коэффициент пропорциональности, н – число молекул на 1 м2 при максимальной упаковке.
Так как скорости процессов адсорбции и ресорбции равны, эти уравнения можно приравнять друг другу, и решением полученного уравнения относительно и будет
и = Kp/(1+Kp), K = ka/( kдн) (12)
Исходя из того, что число адсорбированных молекул на единице поверхности равно ин, то количество молей A на единицу поверхности равно
A = ин/NA (13)
Максимальная адсорбция:
A∞ = н/ NA (14)
Тогда уравнение изотермы адсорбции Ленгмюра, связывающее адсорбцию с давлением газа над адсорбентом имеет вид:
A = A∞ Kp/(1+Kp) (15)
Аналогичным путём выводится уравнение изотермы адсорбции Ленгмюра, связывающее адсорбцию с концентрацией:
Г = Гₒ C/(C+b) (16),
С – равновесная концентрация адсорбируемого вещества в растворе.
(рис.5)
На рисунке приведена изотерма мономолекулярной адсорбции [2].
Полимолекулярная адсорбция. Уравнение БЭТ
Многие изотермы адсорбции имеют форму, отличную от изотермы адсорбции Ленгмюра. Пример: S-образные кривые, часто наблюдаемые при адсорбции паров:
(рис.6)
С. Брунауэр, П. Эммет, Дж. Теллер предложили теорию, по которой молекулы из газовой фазы могут адсорбироваться поверх уже адсорбированных молекул (Харкинс предложил ей название «теория БЭТ» по первым буквам фамилий авторов). Авторы принимали теорию Ленгмюра о динамическом характере адсорбционного равновесия и справедливость уравнения Ленгмюра для каждого адсорбционного слоя. Уравнение изотермы адсорбции БЭТ:
y/V(1 – y) = 1/CVm + (C – 1)y/VmC (17)
Уравнение изотермы адсорбции Фрейндлиха
Теория Ленгмюра даёт нам идеальную картину процесса адсорбции. С учётом разности расстояний между активными центрами, зависимости их друг от друга, взаимодействий между адсорбированными молекулами и т.д. вид изотермы адсорбции усложняется.
(рис.7) (рис.8)
Г. Фрейндлих показал, что при T = const удельная адсорбция (число молей адсорбированного газа или растворённого вещества, приходящееся на единицу массы адсорбента), обозначаемая x/m, пропорциональна равновесному давлению (для газов) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбируемого вещества, возведённым в степень меньше единицы.
x/m = aCn, x/m = aPn (18)
На рис.7 изображена изотерма адсорбции Фрейндлиха в обычных координатах, на рис.8 – в логарифмических.
Вид изотерм адсорбции по классификации БДДТ
(рис.9)
I – изотерма, описываемая уравнением Ленгмюра
II – формирование полислоя на поверхности с высоким адсорбционным потенциалом
III – образование полислоя из газовой среды на твёрдом адсорбенте. Справедлива для тел, потенциал монослоя которых мал и имеет тот же порядок, что и теплота конденсации адсорбтива
IV, V – аналогичны типам II и III для пористых сорбентов, где адсорбция ограничивается объёмом мезопор, петля гистерезиса соответствует дополнительному поглощению пара в результате капиллярной адсорбции.
Ионная адсорбция. Иониты
При адсорбции ионов из раствора адсорбируется чаще всего один тип ионов. Адсорбция может проходить по двум механизмам:
1. Обменная адсорбция. При этом вместо ионов, адсорбируемых из раствора твёрдой фазой, из твёрдой фазы выделяется эквивалентное количество ионов того же знака. Примером такой адсорбции является адсорбция ионов солей ионитами (например, ионообменными смолами).
Иониты – это высокомолекулярные соединения, при диссоциации выделяющие в воду большое количество одноатомных ионов и высокомолекулярный ион противоположного знака. По типу выделяемых ионов они делятся на 2 класса: катиониты и аниониты. При диссоциации катионитов образуется высокомолекулярный анион, в воду выделяется множество катионов. При диссоциации анионитов, соответственно, происходит выделение в воду анионов.