Исследование и разработка новых сорбентов
СОДЕРЖАНИЕ
Введение
1. Исследование и разработка новых сорбентов
2. Биотехнологические композиционные кремнеземноорганические сорбенты
3. Сорбенты для ионной хроматографии, полученные адсорбцией цвиттерионнных красителей на сверхсшитом полистироле
4. Хелатсодержащие сорбенты и стационарные фазы для газовой хроматографии
5. Комплексообразующие свойства карбоксильных сорбентов для хроматофокусирования
6. Специальные сорбенты для ВЭЖХ биополимеров
7. Силикагели "Армсорб" для хроматографии
8. Предложение от ЭЛСИКО на сорбенты – силикагель
9. Синтез полимерных сорбентов
10. Сравнение эксплуатационных свойств СПС Био-сульфоэтил и Sephadex SP при препаративных разделениях
11. Новые ионообменные смолы
12. Микросферические полимерные сорбенты для высокоэффективной жидкостной хроматографии и твердофазной экстракции
13. Полимерные сорбенты для твердофазной экстракции и жидкостной хроматографии
14. Газовая хроматография
Заключение
Литература
ВВЕДЕНИЕ
Развитие науки на пороге XXI века было бы невозможно себе представить без введения и использования новых технологий. Одной из развивающихся и прогрессирующих наук в наше время является биохимия. Хроматографические методы исследования и анализа вещества, как одни из биохимических методов исследования, также подверглись различным нововведениям и преобразованиям. Развитие хроматографии привело к усовершенствованию техники, применяемой для проведения эксперимента. Создавались все более новые, качественно усовершенствованные приборы, дающие, в сравнении со своими предшественниками, заметно отличающийся результат. Эти изменения и усовершенствования коснулись не только приборов исследования, но и сорбирующих материалов. В своей работе я изложил характеристику некоторых из них и ряда других уже известных сорбентов, зарекомендовавших себя на рынке, а также привел примеры их сравнения с аналогами данных сорбентов других фирм.
1. ИССЛЕДОВАНИЕ И РАЗРАБОТКА НОВЫХ СОРБЕНТОВ
Развитие современной науки и технологий невозможно без контроля состава сложных смесей, сырья, продуктов и полупродуктов, в том числе лекарственных препаратов, а также оптимизации процессов сорбционного концентрирования и выделения целевых продуктов.
Важное значение при этом имеют изомерселективные сорбенты. К числу таких сорбентов относятся графитированная термическая сажа (ГТС) и термотропные жидкие кристаллы (ЖК). На нашей кафедре проводятся исследования адсорбентов, в частности, графитированной термической сажи – уникального углеродного адсорбента с однородной плоской поверхностью, состоящей из базисных граней графита. Этот адсорбент чувствителен к пространственному строению органических соединений, в том числе изомеров (кроме оптических), рис. 1.
|
Рис. 1. Разделение изомеров пергидрофенантрена на колонке с ГТС при 250ºС [Киселев А.В. и др.], колонка 2 м × 1 мм, заполненная частицами ГТС диаметром 0,22-0,25 мм |
Метод газовой хроматографии применен для изучения адсорбции на ГТС аминов, анилина, каркасных соединений, азотсодержащих гетероциклов. Экспериментальные данные сопоставлены с молекулярно-статистическими расчетами по Киселеву А.В. Эти исследования имеют большое значение как для дальнейшего развития теории адсорбции, так и для решения практических задач, связанных с разработкой хроматографических методов анализа.
Дальнейший прогресс в применении углеродных адсорбентов связан с использованием модифицированных углеродных адсорбентов. Нанесение плотных монослоев (или полислоев) модификаторов, относящихся к классу мезогенов (жидких кристаллов), является наиболее перспективным, так как жидкокристаллические сорбенты обладают повышенной структурной селективностью при разделении пространственных изомеров.
Проведены экспериментальные исследования адсорбции органических соединений ряда н-алканов и аренов, в том числе изомерных ксилолов на ГТС, модифицированной монослоями нематического, холестерического ЖК, а также жидкокристаллического краун-эфира. Установлено, что модифицирование ГТС монослоями ЖК повышает чувствительность адсорбента к электронному строению молекул адсорбатов при сохранении высокой чувствительности к их пространственному строению. Так, например, на модифицированной ГТС разделяются все три изомера ксилола, тогда как на "чистой" ГТС – только мета- и пара- изомеры. При нанесении на ГТС жидкокристаллического краун-соединения с гидрофильной полостью (рис. 2) для короткоцепочечных спиртов наблюдается повышение теплоты адсорбции вследствие образования комплексов включения типа "гость-хозяин".
Проведены молекулярно-статистические расчеты констант Генри и теплот адсорбции ароматических углеводородов на ГТС, модифицированной мономолекулярным слоем холестерического ЖК, определены значения поправочных множителей, позволяющих перейти от констант атом-атомных потенциалов для "чистой" ГТС к константам, описывающим взаимодействие атомов в молекулах адсорбатов с модифицированным адсорбентом.
|
Рис. 2. Квантово-механическое моделирование взаимодействия изо-пропанола с молекулой ДАДБ-18-К-6. |
К изомерселективным сорбентам относятся и термотропные жидкие кристаллы – самоорганизующиеся в пространстве в виде определенных структур (мезофаз) системы с анизометричными органическими молекулами. В газовой хроматографии их используют в виде тонких фазовых пленок (~1000 – 2000 Å), нанесенных на поверхность пор твердого носителя. Большинство экспериментальных и теоретических работ ранее было посвящено изучению разделительных свойств нематических (N) жидких кристаллов с каламитной (вытянутой) формой молекул, а также бинарных смесей на их основе, образующих смешанную N фазу.
Было проведено систематическое изучение сорбционных и селективных свойств нескольких бинарных ЖК систем, образующих индуцированную смектическую SA фазу. Так, например, в бинарной системе 4-н-октилоксифенил-4'-н-пентилоксибензоат (ОФПБ) – 4,4'-бифенилдикарбоновой кислоты бис-[2,2'-ди-(н-гексилоксикарбонил)этинил]фениловый эфир (БКГФ) оба исходных ЖК образуют N мезофазу. При их смешении возникает индуцированная SA фаза, температурный интервал существования которой максимален при соотношении компонентов ОФПБ – БКГФ 2 : 1. Стабилизация слоистой ЖК структуры SA типа с толщиной слоя, равной длине молекулы БКГФ, обусловлена тем, что относительно короткие молекулы ОФПБ, имея длину молекулы, примерно равную длине центрального фрагмента ароматической части БКГФ и ориентируясь параллельно центральному фрагменту БКГФ, образуют квазигексагональную упаковку, рис. 3.