Инертные газы
Рефераты >> Химия >> Инертные газы

XeF6 + 4H2O 6HF + H2XeO4.

Если к продуктам этой реакции быстро добавить Ba(OH)2, выпадает белый аморфный осадок ВаХеО4. При 125 °C он разлагается на окись бария, ксенон и кислород. Получены аналогичные соли – ксенонаты аммония, натрия, лития, кальция и калия.

При действии озона на раствор ХеО3 в одномолярном едком натре образуется натриевая соль высшей кислоты ксенона Nа4ХеО6. Перксенонат натрия может быть выделен в виде бесцветного кристаллогидрата Nа4ХеО6·6Н2О. К образованию перксенонатов приводит и гидролиз XeF6 в гидрооксиях натрия и калия. Если твёрдую соль Nа4ХеО6 обработать раствором нитрата свинца, серебра или уранила UО2²+, получаются соответствующие перксенонаты. Перксенонат серебра – чёрного цвета, свинца и уранила – жёлтого. Перксенонат-анион – самый сильный из ионов окислителей. Чрезвычайно мощный окислитель и перехлорат ксенона Хе(СlО4)2, в котором ксенон играет роль катиона. Из всех окислителей-перхлоратов он самый сильный.

Окисел, соответствующий высшей кислоте ксенона, получают при взаимодействии Nа4ХеО6 с охлаждённой безводной серной кислотой. Получается уже упоминавшаяся четырёх окись ксенона ХеО4. Её молекула построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко. При температуре выше 0 °C оно разлагается на кислород и ксенон. Иногда разложение четырёхокиси ксенона (трёхокиси – тоже) носит характер взрыва.

И всё-таки большинство известных ныне соединений ксенона (а всего их получено примерно полторы сотни) – бескислородные. Преимущественно это двойные соли – продукты взаимодействия фторидов ксенона с фторидами сурьмы, мышьяка, бора, тантала, ниобия, хрома, платиновых металлов.

Сильные окислительные свойства соединений ксенона химики уже используют в своих целях. Так, водные растворы дифторида ксенона позволили впервые в мировой практике получить перброматы – соединения семивалентного брома, состав которых МВrО4, где М – одновалентный металл.

Советские химики внесли большой вклад в синтез и изучение соединений благородных газов, ксенона в первую очередь. В 1976 году группе учёных во главе с В. А. Легасовым за синтез и исследование физико-химических свойств этих веществ была присуждена Государственная премия.

Ксенон на практике

Без ксенона – тяжёлого, редкого и пассивного газа сегодня не могут обойтись многие отрасли народного хозяйства. Области его применения разнообразны и порой неожиданны.

В светотехнике признание получили ксеноновые лампы высокого давления. В таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер. Свет в ксеноновых лампах появляется сразу после включения, он ярок и имеет непрерывный спектр – от ультрафиолетового до ближней области инфракрасного. Цвет его близок к белому с чуть желтоватым оттенком; не него можно смотреть только через фильтр: глаза не выдерживают таких ярких лучей.

Ксеноновые лампы применяются во всех случаях, когда правильная цветопередача имеет решающее значение: при киносъёмках и кинопроекции, при освещении сцены и телевизионных студий, в текстильной и лакокрасочной промышленности.

Несколько лет назад на Московском электроламповом заводе было создано уникальное осветительное устройство – ксеноновый светильник «Сириус». В лампе используется непрерывный электрический разряд в сосуде из кварцевого стекла, наполненном ксеноном под высоким давлением. Между двойными стёклами сосуда циркулирует охлаждающая его вода. Мощность лампы «Сириус» 300 киловатт. Одна такая лампа способна осветить большую городскую площадь.

Ксеноном пользуются и медики – при рентгеноскопических обследованиях головного мозга. Как и баритовая каша, применяющаяся при просвечивании кишечника, ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения. При этом он совершенно безвреден. Радиоактивный изотоп элемента №54 (Хе), ксенон-133, используют при исследовании функциональной деятельности легких и сердца.

Промышленность начинает применять фториды ксенона, прежде всего моноизотопные. Изотопы ксенон-133 и особенно ксенон-135 имеют очень большие сечения захвата тепловых нейтронов, это сильные реакторные яды. Но после получения твёрдых и достаточно стойких соединений элемента №54 (Хе) появилась надежда использовать это свойство изотопов ксенона на благо ядерной физики. С другой стороны, возможность связать эти изотопы фтором позволяет решить и технически, и экологически важную задачу эффективного улавливания этих изотопов. А ещё: в виде фторидов ксенона удобно хранить и транспортировать и дефицитный ксенон, и всеразрушающий фтор.

Окислительные свойства соединений ксенона, прежде всего того же дифторида, уже широко используют в лабораторной практике и несколько уже – при синтезе новых практически важных веществ. В частности, с помощью соединений ксенона получают некоторые медицинские препараты, например 5-фторурацил. Но, как говорится, это только цветочки – ягодки впереди. Как и другие новые области науки, химия благородных газов, в первую очередь ксенона, развивается очень быстрыми темпами. Скоро никого уже не удивит, например, реактивный двигатель с ксеноносодержащим окислителем.

Соединения элемента №54 (Хе) коренным образом преобразили его судьбу.

Rn – радон

Осенью 1969 года редакция журнала «Химия и жизнь» получила такое письмо: «Работая над рефератом об элементе радоне, я столкнулась с противоречивыми объяснениями по поводу открытия этого элемента. В Детской энциклопедии (издание 1966г.) говорится, что радон открыл в 1900 году английский ученый Резерфорд. Малая Советская Энциклопедия утверждает, что радон открыл французский ученый Дебьерн, а в некоторых учебниках по химии честь открытия этого элемента приписывается Рамзаю.

Кому же верить?»

Письмо было опубликовано в журнале вместе с подробным ответом-консультацией, суть которого можно свести к казуистической формулировке: оба правы… Не оба даже, а многие.

Радон действительно открывали неоднократно, и в отличие от других подобных историй каждое новое открытие не опровергало, а лишь дополняло предыдущее. Дело в том, что никто из учёных не имел дела с элементом радоном – элементом в обычном для нас понимании этого слова. Одно из нынешних определений элемента – « совокупность атомов с общим числом протонов в ядре», т.е. разница может быть лишь в числе нейтронов. По существу элемент – совокупность изотопов.

Но в первые годы нашего века ещё не были открыты протон и нейтрон, не существовало самого понятия об изотопии.

Резерфорд и Оуэнс, Рамзай и Содди, Дорн, Дебьерн независимо друг от друга и практически одновременно (1900 – 1904 г.г.) находили изотопы одного итого же элемента – элемента №86. Все эти открытия были продолжением пионерских работ супругов Кюри в области радиоактивности. В каждом из этих исследований, новый радиоактивный газ, новый элемент. Да и не могли считать иначе: происхождение вновь открытых газов, их главная радиоактивная характеристика – период полураспада – были далеко не одинаковыми. Резерфордовскую эманацию (название происходит от латинского emanatio-«истечение») порождал торий. Дебьерновский актинон получался из актиния. Дорновский радон и рамзаевский нитон (от латинского nitens – «блестящий, светящийся») были дочерним продуктом радия…


Страница: