Извлечение серебра из отработанных фотографических растворов
ВВЕДЕНИЕ
В процессе фиксации фотографической пленки для удаления невосстановившегося серебра с пленки применяют тиосульфат натрия или аналогичные реактивы, например тиосульфат калия, тиосульфат аммония или их смеси. Удаляемое серебро накапливается в растворе, а также и в воде, используемой для последующего промывания пленки. Необходимость извлечения серебра из фотографических растворов обусловливается рядом причин. Прежде всего, выделяемое серебро не только само по себе является ценным продуктом, но и позволяет экономить природные ресурсы.
1. ИЗВЛЕЧЕНИЕ СЕРЕБРА ИЗ ОТРАБОТАННЫХ ФОТОГРАФИЧЕСКИХ РАСТВОРОВ
В процессе фиксации фотографической пленки для удаления невосстановившегося серебра с пленки применяют тиосульфат натрия или аналогичные реактивы, например тиосульфат калия, тиосульфат аммония или их смеси. Удаляемое серебро накапливается в растворе, а также и в воде, используемой для последующего промывания пленки. Необходимость извлечения серебра из фотографических растворов обусловливается рядом причин. Прежде всего, выделяемое серебро не только само по себе является ценным продуктом, но и позволяет экономить природные ресурсы. Ежегодно только 65 % общего количества серебра, используемого промышленностью, добывается в рудниках. Остальное количество серебра поступает из других источников, в том числе извлекается из промышленных отходов. По оценкам фотографическая промышленность потребляет 1/3 всего промышленного потребления серебра. Таким образом, извлечение серебра из отходов фотографической промышленности имеет большое значение для экономии серебра. Оценка также показывает, что на фотообработку, производство рентгенограмм и в полиграфической промышленности только в США в течение года расходуется ~2000 т серебра. Можно предположить, что половина этого количества остается в фотографической пленке или бумаге. В таком случае 1000 т серебра растворяются в фотографических растворах и должны быть извлечены оттуда.
Второй очень важной причиной для извлечения серебра из фотографических отходов является тот факт, что серебро загрязняет водоемы, а его соли оказывают очень значительный отрицательный эффект на организм человека. Известны различные процессы для выделения серебра из отработанных фиксирующих фотографических растворов. Некоторые из этих способов не находят применения в практике вследствие их низкой экономичности. Недостатком других способов является малая степень извлечения серебра, не превышающая 90 %. Вследствие этого в США потери серебра достигают ~ 100 т в год. Если учесть, что присутствие в воде 0,05 ррт серебра делает ее не пригодной для питья, становится очевидным, к какому значительному загрязнению окружающей среды приводят упомянутые потери серебра. Имеется еще ряд процессов, которые не нашли практического применения, поскольку они требуют очень высоких начальных инвестиций, либо связаны с высокой стоимостью производства или их малой производительностью.
Кроме того, упомянутые методы извлечения серебра не обеспечивают эффективного разрушения сернистых соединений, содержащихся в фиксирующем растворе. Эти соединения оказывают отрицательное влияние на окружающую среду, поскольку в процессе их медленного окисления они поглощают кислород, а при определенных условиях подвергаются химическим превращениям с образованием плохо пахнущих и опасных соединений. Таким образом, учитывая, что в фиксирующих растворах содержится по меньшей мере 1000 т серебра, в них должно содержаться эквивалентное количество сернистых соединений, которые при сбросе без дополнительной обработки, загрязняют окружающую среду.
Устройство представляет собой электролизер, работающий в прерывистом режиме, предназначенный для извлечения серебра из отработанных фотографических отбеливающефиксирующих растворов. Катодная часть и раствор автоматически отделяются друг от друга в момент выключения тока. Буферный резервуар, находящийся над электролизером, из которого в ходе процесса раствор непрерывно подается насосом с расходомером в электролизер, снабжен нижним датчиком-уровнемером, который включает электролизер и подачу сырья и включает насос, который перекачивает раствор из электролизера обратно в буферный резервуар. Выключение этого насоса производится с помощью нижнего датчика-уровнемера, имеющегося в электролизере. При этом одновременно включается (от верхнего датчика буферного резервуара) наполняющий насос, подающий раствор в электролизер, а также сам электролизер. Наполняющий насос выключается верхним датчиком-уровнемером электролизера. Слив раствора из катодной части происходит автоматически.
Раствор автоматически выводится с помощью сифона в электролизер и происходит автоматическое включение постоянного тока между катодом и анодом на определенный заданный промежуток времени; при прохождении тока серебро высаживается на катоде. Электролизер снабжен магнитной мешалкой, которая также приводится в действие автоматически.
Серебро из фотографических растворов выделяют путем электролиза. Раствор, например отработанный фиксаж, подается в мерный резервуар, где накапливается до достижения определенного объема. После этого он автоматически, с помощью сифона с триггерным устройством, подается в электролизер большего объема, чем объем мерного резервуара. Одновременно автоматически включается постоянный ток между катодом и анодом и происходит высаживание серебра на катоде. Раствор в ходе электролиза перемешивается мешалкой, предпочтительно магнитной, что позволяет достигать максимальной степени выделения серебра.
При подкислении происходит осаждение серебра, связанного с желатином и соединений серебра; выпадение осадка происходит в отстойнике. Жидкость сливают с осадка, нейтрализуют и сбрасывают в канализацию. Осадок удаляют из резервуара и выделяют из него серебро, например путем сжигания. Процесс можно проводить как в периодическом, так и в непрерывном режиме. На рис. 4 представлена схема периодического варианта этого процесса. Сточные промывные воды процесса производства фотографической эмульсии или желатиновая фотографическая эмульсия, снятая с отработанной пленки, подвергается обработке протеолитическими энзимами в реакторе 6, содержащем 9,5 м3 жидкости. В жидкость подают водяной пар до тех пор, пока ее температура ие достигнет 50 °С. Затем устанавливают величину рН раствора ~8, добавляя водный раствор щелочи, например КОН или NaOH. Добавляют ~5 ррт (по массе) протеолитического энзима и смесь вываривают ~30 мин при 50°С. Обработка является особенно эффективной при использовании энзимов, активных в щелочной среде, например Биопразы. Можно использовать различные протеолитические энзимы. В каждом случае необходимо устанавливать величину рН среды, оптимальную для данного энзима.
Величину рН реакционной смеси, содержащей Биопразу и находящейся в реакторе 6, снижают до 4,2, например до 2,5-4,2, предпочтительно до 3,5, Добавляя кислоту, например 98 % серную кислоту в количестве 0,5-1 л на 9,5 м жидкости. При добавлении кислоты содержимое реактора непрерывно перемешивается с помощью насоса. Через I мин образуется мелкий осадок; в результате коалесценции размеры хлопьев осадка постепенно увеличиваются. Время осаждения составляет ~10 мин; затем содержимое реактора перекачивается насосом в отстойник 7 емкостью 50%. Полный цикл обработки материала в реакторе продолжается ~1,5 ч.