Золь-гель метод
Рефераты >> Химия >> Золь-гель метод

δ¯ δ¯

OC2H5 OC2H5

δ+ H δ+ H

≡ Si – CI + CHOH; (4)

≡ Si – CI + HO → ≡ Si – OH + H+ CI¯; (5)

≡ Si- CI + HO - Si ≡ → ≡ Si – O - Si ≡ + H+ + CI¯; (6)

≡ Si – O – H ≡ Si…O - H

≡ Si - O – H + ≡ Si – OH → → →

≡ Si – O – H ≡ Si – O…H

≡ Si – O – Si ≡ + H2O. (7)

Рис.1.1. Диаграмма растворимости системы ТЭОС-этанол-вода.

При получении стекла золь-гель методом основным условием распределения компонентов друг в друге на молекулярном уровне является взаимная растворимость всех реагентов, промежуточных соединений и продуктов реакции. При этом следует иметь в виду нерастворимость тетраэтилортосиликата в воде и ограниченную его растворимость в тройной системе ТЭОС – этанол – вода (рис.1.1). Поэтому для успешного протекания процессов гидролиза и поликонденсации необходимо в систему вводить определенное количество этанола, обеспечивающего взаимную растворимость ТЭОСа и воды. Установлено, что оптимальными соотношениями [ТЭОС] / [C2H5OH] при получении монолитных ксерогелей и стекол являются 1:1 и 1:2 [2]. Однако необходимо заметить, что добавление этилового спирта в больших количествах приводит к нежелательным эффектам при сушке гелей, а именно – увеличивает вероятность растрескивания за счет бурного выделения паров спирта из пористой структуры и уменьшает общую концентрацию твердых частиц в теле геля, что приводит к большим усадкам и растрескиванию гелей на стадии перехода гель-стекло.

Вопрос о механизме перехода “золь-гель”, о происходящих при этом процессах и структурных перестройках принадлежит к числу наиболее сложных и малоизученных. Этот переход завершается, когда однофазная жидкость превращается в двухфазный гель, состоящий из твердой и жидкой фаз, который может быть превращен в двухфазный ксерогель [7]. Переход необратим и протекает без изменения объема, он проявляется в росте вязкости. Полагают, что при росте полимеров в растворе в результате реакции конденсации они соединяются в кластеры все большего размера, пока весь раствор не превращается в один кластер. Считают, что при росте полимеров в растворе в результате реакции конденсации они соединяются в кластеры все большего размера, пока весь раствор не превратиться в один кластер.

Управление процессами полимеризации осложняются тем, что в случае кислотного катализа реакция конденсации имеет тенденцию начинаться на довольно поздней стадии, а кинетика реакций гидролиза и конденсации носит сложный характер.

1.4 Литье и гелеобразование

Для нейтрализации кислотной среда и ускорения процесса гелеобразования к смеси добавляют по каплям водный раствор аммиака до рН 4-6. В зависимости от окончательного значения рН устанавливают время гелеобразования. Время гелеобразования зависит от следующих основных факторов: соотношения [HO] / [TЭОС], ph золь-коллоидной ситемы.

Установлено, что для системы [Н0] / [ТЭОС] характерна линейная зависимость логарифма времени гелеобразования от рН золь-коллоида. Причем для различных молярных соотношений [HО] / [ТЭОС] эта зависимость соблюдается при условиии полною протекания процесса гидролиза ТЭОС. Процесс гидролиза является экзотермической реакцией и проходит при самопроизвольном повышении температуры реакционной смеси до 50 .60°С, а об его окончании можно судить по снижению температуры до 20 .30°С.

При получении стекла золь-гель методом основным условием распределения компонентов друг в друге на молекулярном уровне является взаимная растворимость всех реагентов, промежуточных соединений и продуктов реакции. При этом следует иметь в виду нерастворимость тетраэтилортосиликата в воде и ограниченную его растворимость в тройной системе ТЭОС – этанол – вода (рис.1.1). Поэтому для успешного протекания процессов гидролиза и поликонденсации необходимо в систему вводить определенное количество этанола, обеспечивающего взаимную растворимость ТЭОСа и воды. Установлено, что оптимальными соотношениями [ТЭОС] / [C2H5OH] при получении монолитных ксерогелей и стекол являются 1:1 и 1:2 [2]. Однако необходимо заметить, что добавление этилового спирта в больших количествах приводит к нежелательным эффектам при сушке гелей, а именно – увеличивает вероятность растрескивания за счет бурного выделения паров спирта из пористой структуры и уменьшает общую концентрацию твердых частиц в теле геля, что приводит к большим усадкам и растрескиванию гелей на стадии перехода гель-стекло.

Установлено, что оптимальным временем гелеобразования в системе "золь-коллоид" является 3 .4 часа. Это время определяли до момента потери системой вязко-текучих свойств. При быстром гелеобразовании (Тгл ≤ I ч) в структуре геля "замораживаются" пузырьки воздуха, которые в будущем гельном стекле превращаются в закрытые поры и приводят к оптическим дефектам. При медленном гелеобразовании (Тгл 3 .4 ч) формируется однородная структура, что уменьшает вероятность растрескивания геля при переходе в монолитное стекло.

1.5 Созревание и сушка

Существенной операцией при изготовлении изделий золь-гель технологией при их формировании заливкой раствора в формы является сушка. В процессе сушки возникают напряжения и растрескивание гелей. Напряжения пропорциональны скорости сушки и толщине геля. Поскольку испарение воды идет с поверхности тела, возникает градиент концентрации воды и соответствующий ему градиент сжатия, также вызывающий напряжения. При этом трансформаторы жидкости лимитируются диффузией, хотя существует иная точка зрения о трансформаторе жидкости в порах путем течения.

Сушка геля, которая может проводиться как при комнатной температуре, так и при нагревании, приводит к удалению из него воды, спирта, органических остатков, что проявляется в уменьшении массы и объема (усадке) геля и в изменении его плотности. [8].

Определение сухого геля, затруднено, поскольку гели не остаются инертными после сушки. Так, они обнаруживают обратное поглощение влаги при нагреве до 150оС и увеличение удельной поверхности до максимума около 300оС [9]. Испарение жидкости приводит к образованию пор, в которых возникают капиллярные напряжения, растущие с уменьшением размера пор и при наличии пор различного диаметра. Эти напряжения приводят к растрескиванию геля, уменьшающемуся с повышением прочности его структурной сетки [10].

“Скелетная” плотность ксерогеля (ρs), рассчитанная на основе измерения его объемной плотности и объема пор, существенно ниже, чем плавленого кремнезема (стекла), что связывают с низкой плотностью поперечных связей при гелеобразовании. Высокий коэффициент теплового расширения (α) геля (280·10¯7 К¯1 – вместо 5·10¯7 К¯1 у кварцевого стекла и низкий модуль упругости указывают на высокую концентрацию немостиковых кремнекислородных связей в геле после его образования. После термообработки при 500оС до спекания α геля становится близким к α кварцевого стекла, и ИК-спектры их идентичны [1].


Страница: