Закономерности образования и роста покрытий
б =(NзSr)-1,
где Sr~рR23–средняя площадь отдельного зародыша; R3– радиус зародыша; N-плотность зародышей.
Осажденные на поверхности атомы в условиях проявления сильной связи их с поверхностью формируют купол частицы, определяют ее внешнюю форму (сферическую, эллипсовидную, пирамидальную или какую то другую).
2). Захват зародышем диффундирующих по поверхности подложки адсорбированных атомов. Зародыши являются стоком диффундирующих атомов. Вокруг зародыша образуется зона с градиентом плотности адсорбированных атомов (рисунок 2.5), который и определяет направление и плотность потока диффузии. Ширина градиентной зоны соизмерима с длиной диффузионного пробега адатомов металла.
Для характеристики процесса осаждения вводят в рассмотрение зону захвата зародыша А(t,Rз) – эффективный участок площади поверхности, при попадании на который атом неизбежно конденсируется, т.е. захватывается зародышем. С учетом возможности одновременного роста зародышей по двум рассмотренным выше механизмам эффективная площадь зоны захвата приближенно может быть оценена с помощью выражения
.
Для характеристики кинетики процесса осаждения атомов вводят коэффициент конденсации. Различают:
- мгновенный коэффициент конденсации:
; ; ,
где - плотность потока атомов, присоединенных к растущим зародышам в данный момент времени за дифференциально малый его промежуток; - плотность потока атомов, реиспаренных в газовую фазу с поверхности;
-интегральный коэффициент конденсации
,
где N, Nк– число атомов, поступивших на поверхность и претерпевших конденсацию на поверхности в течение времени t соответственно.
В общем случае значение зависит от плотности зародышей и средней площади их зоны захвата:
,
где –коэффициент, который учитывает перекрытие зон захвата.
Как правило, на поверхности неорганических материалов зародыши образуются мгновенно, и их плотность в процессе роста меняется незначительно.При осаждении же на поверхность полимерных материалов вследствие подвижности адсорбционно-активных групп в поверхностном слое полимера плотность зародышей, как правило, возрастает в процессе осаждения. Характер изменения плотности зародышей в процессе вакуумной металлизации полимеров сказывается на зависимости коэффициента конденсации от температуры поверхности подложки. Отметим, что для неорганических материалов коэффициент конденсации при нагревании подложки монотонно уменьшается вследствие возрастания вероятности реиспарения адатомов.
При осаждении атомов металла на поверхности неполярных полимеров при T>Tс (Tс–температура стеклования полимера) вследствие сегментальной подвижности макромолекул на поверхности возрастает плотность активных центров, имеющих высокий потенциал взаимодействия и способных выполнять роль стоков адсорбированных атомов. Как следствие этого, при нагревании полимера имеет место возрастание коэффициента конденсации. При Т>Тmax преобладающим становится процесс термической активации процесса реиспарения, и в результате наблюдается снижение К. При достаточно высокой температуре полимера, когда происходит его плавление (Т > Тпл), резко возрастает адсорбционная активность поверхности, имеет место диффузия адатомов в объем подложки и наблюдается повышение коэффициента конденсации.
Кинетика конденсации атомов металла в условиях непрерывной генерации на поверхности зародышей, например, при металлизации полимеров, может быть описана в рамках релаксационно-диффузионной теории конденсации. В соответствии с представлениями данной теории полимер рассматривается как система связанных между собой макромолекул. Движение кинетических элементов макромолекул, их сложный химический состав порождают неоднородность адсорбционных свойств поверхности, их изменение во времени. Особый интерес представляет выход на поверхность участков макромолекул, которые обладают высокой активностью и способны при взаимодействии с адатомами металла образовывать достаточно стабильные комплексы. Эти комплексы можно рассматривать как потенциальные центры зародышеобразования конденсированной фазы. Основное уравнение релаксационно-диффузионной теории конденсации
где – плотность зародышей в начальный момент времени (); – площадь средней зоны захвата зародыша в момент времени t; –площадь зоны захвата зародыша, образовавшегося через время , отсчитанное от начала процесса осаждения и находящегося на поверхности время .
Таким образом, первое слагаемое релаксационного уравнения определяет эффективную (суммарную) зону захвата зародышей, образовавшихся в начальный момент времени, второе слагаемое описывает вклад в коэффициент конденсации процессов присоединения атомов к зародышам, которые образовались в процессе осаждения.
Приведенное выше релаксационное уравнение описывает изменениекоэффициента конденсации в процессе осаждения и его зависимость от температуры поверхности подложки, плотности потока падающих на нее атомов.
В рамках релаксационно-диффузионной теории конденсации дано объяснение наблюдаемых при металлизации полимеров эффектов: селективное осаждение металлического покрытия на аморфных участках поверхности; влияние механических напряжений в поверхностных слоях на коэффициент конденсации; явление передачи через тонкие полимерные слои адсорбционной активности подложки и др.
1.3 Взаимодействие частиц конденсированной фазы, их срастание (коалесценция)
Коалесценция является одной из основных стадий роста пленки. Она протекает после того, как на поверхности образуются частицы конденсированной фазы, плотность и степень заполнения поверхности которых достигают критических значений. Островки конденсата по мере их роста вступают в контакт друг с другом и, в итоге, образуют пространственную сетку. Процесс слияния вначале протекает очень быстро, а затем после возникновения сетки существенно замедляется. В процессе взаимодействия частиц при достаточно высоких температурах возможно их перемещение по поверхности. В этом случае на поверхности образуются участки, свободные от конденсированной фазы и на которых возможно протекание процессов вторичного зародышеобразования. На стадии коалесценции, в зависимости от условий осаждения и природы материалов покрытия и подложки, размер частиц составляет 50…500 Е.